The oxidation kinetics of various aliphatic primary and secondary alcohols having varied hydrocarbon chain length were studied using cetyltrimethylammonium dichromate (CTADC) in dichloromethane (DCM) in the presence of acetic acid and in the presence of a cationic surfactant. The rate of the reaction is highly sensitive to the change in [CTADC], [alcohol], [acid], [surfactant], polarity of the solvents, and reaction temperature. A Michaelis-Menten type kinetics was observed with respect to substrate. The chemical nature of the intermediate and the reaction mechanism were proposed on the basis of (i) observed rate constant dependencies on the reactants, that is, fractional order with respect to alcohol and acid and a negative order with respect to oxidant, (ii) high negative entropy change, (iii) inverse solvent kinetic isotope effect, k(H2O)/k(D2O) = 0.76, (iv) low primary kinetic isotope effect, kH/kD = 2.81, and (v) the k(obs) dependencies on solvent polarity parameters. The observed experimental data suggested the self-aggregation of CTADC giving rise to a reverse micellar system akin to an enzymatic environment, and the proposed mechanism involves the following: (i) formation of a complex between alcohol and the protonated dichromate in a rapid equilibrium, equilibrium constant K = 5.13 (+/-0.07) dm(3) mol(-1), and (ii) rate determining decomposition (k(2) = (7.6 +/- 0.7) x 10(-3) s(-1)) of the ester intermediate to the corresponding carbonyl compound. The effect of [surfactant] on the rate constant and the correlation of solvent parameters with the rate constants support the contribution of hydrophobic environment to the reaction mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo0608772 | DOI Listing |
Phytother Res
January 2025
School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.
Atopic dermatitis (AD) is a common inflammatory dermatitis of the skin and poses therapeutic challenges due to the adverse reactions and high costs associated with available treatments. In Eastern Asian countries, a plethora of herbal remedies is extensively employed for the alleviation of AD. Many of these botanicals are renowned for their formidable anti-inflammatory properties, contributing to AD management.
View Article and Find Full Text PDFExpert Opin Drug Deliv
January 2025
Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Moscow, Russia.
Introduction: The pursuit of linear dosage in pharmacy is essential for achieving consistent therapeutic release and enhancing patient compliance. This review provides a comprehensive summary of zero-order drug delivery systems, with a particular focus on reservoir-based systems emanated from different microfabrication technologies.
Areas Covered: The consideration of recent advances in drug delivery systems is given to encompass the key areas including the importance of achieving a constant drug release rate for therapeutic applications.
Postgrad Med J
January 2025
Department of Pediatric Metabolic Diseases, University of Health Sciences, Ankara Etlik City Hospital, Ankara 06170, Turkey.
Metabolism is the name given to all of the chemical reactions in the cell involving thousands of proteins, including enzymes, receptors, and transporters. Inborn errors of metabolism (IEM) are caused by defects in the production and breakdown of proteins, fats, and carbohydrates. Micro ribonucleic acids (miRNAs) are short non-coding RNA molecules, ⁓19-25 nucleotides long, hairpin-shaped, produced from DNA.
View Article and Find Full Text PDFBiosci Microbiota Food Health
August 2024
Local Brand R&D, SSP Co., Ltd., Opera City Tower, 3-20-2 Nishi Shinjuku, Shinjuku-ku, Tokyo 163-1488, Japan.
Phagocytosis by immunocompetent cells is a key role in the biological defense mechanism and is the starting point of the reaction that leads from innate to acquired immunity. Several studies have demonstrated that some lactic acid bacteria strains activate the innate and acquired immune systems of the host. However, further investigation of the mechanism and improvement of usefulness is needed because the effect differs depending on the type and strain of lactic acid bacteria.
View Article and Find Full Text PDFFungal highly reducing polyketide synthases (hrPKSs) are remarkable multidomain enzymes that catalyse the biosynthesis of a diverse range of structurally complex compounds. During biosynthesis, the ketosynthase (KS) and acyltransferase (AT) domains of the condensing region are visited by the acyl carrier protein (ACP) domain during every cycle, catalysing chain priming and elongation reactions. Despite their significance, our comprehension of how these steps contribute to biosynthetic fidelity remains poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!