Methods for the site-specific incorporation of extra components into nucleic acids can be powerful tools for creating DNA and RNA molecules with increased functionality. We present an unnatural base pair system in which DNA containing an unnatural base pair can be amplified and function as a template for the site-specific incorporation of base analog substrates into RNA via transcription. The unnatural base pair is formed by specific hydrophobic shape complementation between the bases, but lacks hydrogen bonding interactions. In replication, this unnatural base pair exhibits high selectivity in combination with the usual triphosphates and modified triphosphates, gamma-amidotriphosphates, as substrates of 3' to 5' exonuclease-proficient DNA polymerases, allowing PCR amplification. In transcription, the unnatural base pair complementarity mediates the incorporation of these base substrates and their analogs, such as a biotinylated substrate, into RNA by T7 RNA polymerase (RNAP). With this system, functional components can be site-specifically incorporated into a large RNA molecule.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nmeth915DOI Listing

Publication Analysis

Top Keywords

base pair
24
unnatural base
20
site-specific incorporation
12
base
8
pair system
8
dna rna
8
incorporation base
8
transcription unnatural
8
unnatural
6
pair
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!