Cannabinoids exert their psychomotor actions through the CB1 cannabinoid receptor in the brain. Genetic deletion of CB1 in mice causes various symptoms, including changes in locomotor activity, increased ring catalepsy, supraspinal hypoalgesia, and impaired memory extinction. Although the cerebellar cortex contains the highest level of CB1, severe cerebellum-related functional deficits have not been reported in CB1 knock-out mice. To clarify the roles of CB1 in cerebellar function, we subjected CB1 knock-out mice to a delay version of classical eyeblink conditioning. This paradigm is a test for cerebellum-dependent discrete motor learning, in which conditioned stimulus (CS) (352 ms tone) and unconditioned stimulus (US) (100 ms periorbital electrical shock) are coterminated. We found that delay eyeblink conditioning performance was severely impaired in CB1 knock-out mice. In contrast, they exhibited normal performance in a trace version of eyeblink conditioning with 500 ms stimulus-free interval intervened between the CS offset and the US onset. This paradigm is a test for hippocampus-dependent associative learning. Sensitivity of CB1 knock-out mice to CS or US was normal, suggesting that impaired delay eyeblink conditioning is attributable to defects in association of responses to CS and US. We also found that intraperitoneal injection of the CB1 antagonist SR141716A [N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole carboxamide] to wild-type mice caused severe impairment in acquisition but not extinction of delay eyeblink conditioning. SR141716A treatment had no effect on trace eyeblink conditioning with a 500 or 750 ms trace interval. These results indicate that endogenous cannabinoid signaling through CB1 is essential for cerebellum-dependent discrete motor learning, especially for its acquisition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6674369 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.1236-06.2006 | DOI Listing |
Nat Commun
January 2025
Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands.
Precise temporal control of sensorimotor coordination and adaptation is a fundamental basis of animal behavior. How different brain regions are involved in regulating the flexible temporal adaptation remains elusive. Here, we investigated the neuronal dynamics of the cerebellar interposed nucleus (IpN) and the medial prefrontal cortex (mPFC) neurons during temporal adaptation between delay eyeblink conditioning (DEC) and trace eyeblink conditioning (TEC).
View Article and Find Full Text PDFCommun Psychol
December 2024
Clinical Child and Adolescent Psychology, Mental Health Research and Treatment Center, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
Associative learning is a key feature of adaptive behaviour and mental health, enabling individuals to adjust their actions in anticipation of future events. Comprehensive documentation of this essential component of human cognitive development throughout different developmental periods is needed. Here, we investigated age-related changes in associative learning in key developmental stages, including infancy, childhood, adolescence, and adulthood.
View Article and Find Full Text PDFClin Neurophysiol
December 2024
Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy; Department of Neurology, Neurocritical Care and Neurorehabilitation, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria. Electronic address:
Objective: Blink reflexes following supraorbital nerve (SON) stimulation are typically modulated by conditioning stimuli (CS) to the index finger (D2) (low-intensity, prepulse inhibition paradigm) or SON (same intensity, paired-pulse paradigm). We aimed to disentangle whether CS-intensity or CS-induced motor responses define blink reflex modulation.
Methods: In 35 subjects, test SON stimuli (8 times sensory threshold, 8 × ST) were applied either alone or following CS.
J Psychopathol Clin Sci
November 2024
Department of Psychological and Brain Sciences, Indiana University Bloomington.
As clinical psychological science and biological psychiatry push to assess, model, and integrate heterogeneity and individual differences, approaches leveraging computational modeling, translational methods, and dimensional approaches to psychopathology are increasingly useful in establishing brain-behavior relationships. The field is ultimately interested in complex human behavior, and disruptions in such behaviors can arise through many different pathways, leading to heterogeneity in etiology for seemingly similar presentations. Parsing this complexity may be enhanced using "simple" tasks-which we define as those assaying elemental processes that are the building blocks to complexity.
View Article and Find Full Text PDFDespite the emerging consensus that microglia are critical to physiological and pathological brain function, it is unclear how microglial roles and their underlying mechanisms differ between brain regions. Microglia throughout the brain express common markers, such as the purinergic receptor P2Y12, that delineate them from peripheral macrophages. P2Y12 is a critical sensor of injury but also contributes to the sensing of neuronal activity and remodeling of synapses, with microglial loss of P2Y12 resulting in behavioral deficits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!