Tissue heterogeneity of the mammalian mitochondrial proteome.

Am J Physiol Cell Physiol

Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Dr., Rm. B1D416, Bethesda, MD 20892-1061, USA.

Published: February 2007

The functionality of the mitochondrion is primarily determined by nuclear encoded proteins. The mitochondrial functional requirements of different tissues vary from a significant biosynthetic role (liver) to a primarily energy metabolism-oriented organelle (heart). The purpose of this study was to compare the mitochondrial proteome from four different tissues of the rat, brain, liver, heart, and kidney, to provide insight into the extent of mitochondrial heterogeneity and to further characterize the overall mitochondrial proteome. Mitochondria were isolated, solubilized, digested, and subjected to quantitative liquid chromatography-mass spectroscopy. Of the 16,950 distinct peptides detected, 8,045 proteins were identified. High-confidence identification threshold was reached by 1,162 peptides, which were further analyzed. Of these 1,162 proteins, 1,149 were significantly different in content (P and q values < 0.05) between at least 2 tissues, whereas 13 were not significantly different between any tissues. Confirmation of the mitochondrial origin of proteins was determined from the literature or via NH(2)-terminal mitochondrial localization signals. With these criteria, 382 proteins in the significantly different groups were confirmed to be mitochondrial, and 493 could not be confirmed to be mitochondrial but were not definitively localized elsewhere in the cell. A total of 145 proteins were assigned to the rat mitochondrial proteome for the first time via their NH(2)-terminal mitochondrial localization signals. Among the proteins that were not significantly different between tissues, three were confirmed to be mitochondrial. Most notable of the significantly different proteins were histone family proteins and several structural proteins, including tubulin and intermediate filaments. The mitochondrial proteome from each tissue had very specific characteristics indicative of different functional emphasis. These data confirm the notion that mitochondria are tuned by the nucleus for specific functions in different tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00108.2006DOI Listing

Publication Analysis

Top Keywords

mitochondrial proteome
20
mitochondrial
13
confirmed mitochondrial
12
proteins
10
nh2-terminal mitochondrial
8
mitochondrial localization
8
localization signals
8
tissues
6
proteome
5
tissue heterogeneity
4

Similar Publications

Absence of MCJ/DnaJC15 promotes brown adipose tissue thermogenesis.

Nat Commun

January 2025

Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.

Obesity poses a global health challenge, demanding a deeper understanding of adipose tissue (AT) and its mitochondria. This study describes the role of the mitochondrial protein Methylation-controlled J protein (MCJ/DnaJC15) in orchestrating brown adipose tissue (BAT) thermogenesis. Here we show how MCJ expression decreases during obesity, as evident in human and mouse adipose tissue samples.

View Article and Find Full Text PDF

Fatty liver impairs liver function and reduces productivity in dairy cows. Our previous in vivo findings demonstrated that branched-chain amino acids (BCAA) or branched-chain ketoacid (BCKA) improved liver function and lactation performance in dairy cows; however, the underlying mechanisms remain unclear. This study aimed to assess the impact of BCAA or BCKA supplementation on intracellular triglyceride (TG) accumulation, lipid metabolism, antioxidant response, and apoptosis in hepatocytes.

View Article and Find Full Text PDF

Structural Dynamics of the Ubiquitin Specific Protease USP30 in Complex with a Cyanopyrrolidine-Containing Covalent Inhibitor.

J Proteome Res

January 2025

Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, U.K.

Inhibition of the mitochondrial deubiquitinating (DUB) enzyme USP30 is neuroprotective and presents therapeutic opportunities for the treatment of idiopathic Parkinson's disease and mitophagy-related disorders. We integrated structural and quantitative proteomics with biochemical assays to decipher the mode of action of covalent USP30 inhibition by a small-molecule containing a cyanopyrrolidine reactive group, . The inhibitor demonstrated high potency and selectivity for endogenous USP30 in neuroblastoma cells.

View Article and Find Full Text PDF

Dynamin-related protein 1 (Drp1) is a mitochondrial fission protein and a viable target for cardioprotection against myocardial ischaemia-reperfusion injury. Here, we reported a novel Drp1 inhibitor (DRP1i1), delivered using a cardiac-targeted nanoparticle drug delivery system, as a more effective approach for achieving acute cardioprotection. DRP1i1 was encapsulated in cubosome nanoparticles with conjugated cardiac-homing peptides (NanoDRP1i1) and the encapsulation efficiency was 99.

View Article and Find Full Text PDF

Hepatic lipid accumulation, or Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), is a significant risk factor for liver cancer. Despite the rising incidence of MASLD, the underlying mechanisms of steatosis and lipotoxicity remain poorly understood. Interestingly, lipid accumulation also occurs during fasting, driven by the mobilization of adipose tissue-derived fatty acids into the liver.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!