A homogeneous catalyst system for the asymmetric cis-hydrogenation of 2,5-disubstituted furans leading to 2',3'-dideoxynucleoside analogues is described. Best enantioselectivities (ee values of up to 72%) were obtained with cationic rhodium complexes ligated by diphospholanes of the butiphane family. The selectivity of the hydrogenation was reversed by the addition of a base or a polar protic solvent in certain cases. Ferrocene- and proline-based systems gave significant, but lower, ee values.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ol061681r | DOI Listing |
Biomacromolecules
January 2025
Dalian Key Laboratory of Green Manufacturing Technology for Fine Chemicals Production, College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, P. R. China.
The development of biobased polyesters with the combination of high UV shielding and degradability is a significant challenge. Herein, three 4-membered cyclic monomers containing two pyrrolidone and two furan rings were prepared by the aza-Michael addition of biobased bifuran diamine and dimethyl itaconate (DMI). They were available in melt polycondensation reactions with various diols to synthesize biobased polyesters.
View Article and Find Full Text PDFBeilstein J Org Chem
December 2024
Department of Chemistry, Faculty of Science, Bilkent University, Ankara 06800, Türkiye.
Acenaphthylene-fused heteroarenes with a variety of five- and six-membered heterocycles such as thiophene, furan, benzofuran, pyrazole, pyridine and pyrimidine were synthesized via an efficient Pd-catalyzed reaction cascade in good to high yields (45-90%). This cascade involves an initial Suzuki-Miyaura cross-coupling reaction between 1,8-dihalonaphthalenes and heteroarylboronic acids or esters, followed by an intramolecular C-H arylation under the same conditions to yield the final heterocyclic fluoranthene analogues. The method was further employed to access polyoxygenated benzo[]fluoranthenes, which are all structurally relevant to benzo[]fluoranthene-based fungal natural products.
View Article and Find Full Text PDFSci Rep
January 2025
Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology; Guangzhou First People's Hospital, Guangzhou Medical University, 1 Panfu Road, Yuexiu District, Guangzhou, 510180, China.
Osteoarthritis (OA) is a multi-factorial degenerative joint disease with unclear pathogenesis. Conservative treatments, primarily aimed at pain relief, fail to halt disease progression. Metabolic syndrome has recently been implicated in OA pathogenesis, underscoring the need for novel therapeutic strategies.
View Article and Find Full Text PDFNat Commun
January 2025
Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
The smoke-derived butenolides, karrikins (KARs), regulate many aspects of plant growth and development. However, KARs and a plant hormone, strigolactones (SLs), have high resemblance in signal perception and transduction, making it hard to delineate KARs response due to the shortage of chemical-genetic tools. Here, we identify a triazole urea KK181N1 as an inhibitor of the KARs receptor KAI2.
View Article and Find Full Text PDFOrg Lett
January 2025
Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China.
A new sequential deprotonation strategy of dimethyl sulfoxide (DMSO) and propargyl alcohol in the presence of a base was developed for the generation of the α-hydroxyl carbanion, which enables rapid and controllable access to a wide range of valuable highly functionalized furans in one pot from alkynes and aldehydes under transition-metal- and additive-free conditions. Preliminary mechanistic studies revealed the crucial role of the base and DMSO. More importantly, deuterium labeling experiments confirmed the formation of the α-hydroxyl carbanion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!