Preferential oxidative addition in Suzuki cross-coupling reactions across one fluorene unit.

Org Lett

Makromolekulare Chemie and Institut für Polymertechnologie, Bergische Universität Wuppertal, Gauss-Strasse 20, D-42097 Wuppertal, Germany.

Published: August 2006

The Suzuki-type cross-coupling reaction of 2,7-dihalofluorenes with 1 equiv of arylboronic acid and Pd2(dba)3/P(t-Bu3) as a catalyst system is investigated. The exclusive formation of the diarylated coupling product demonstrates that "preferential oxidative addition" is also applicable to fluorene monomers due to a controlled intramolecular motion of the regenerated Pd(0) catalyst across the "large" distance between the 2- and the 7-position of one fluorene monomer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol061476bDOI Listing

Publication Analysis

Top Keywords

preferential oxidative
4
oxidative addition
4
addition suzuki
4
suzuki cross-coupling
4
cross-coupling reactions
4
reactions fluorene
4
fluorene unit
4
unit suzuki-type
4
suzuki-type cross-coupling
4
cross-coupling reaction
4

Similar Publications

Nuclear speckles are membraneless organelles that associate with active transcription sites and participate in post-transcriptional mRNA processing. During the cell cycle, nuclear speckles dissolve following phosphorylation of their protein components. Here, we identify the PP1 family as the phosphatases that counteract kinase-mediated dissolution.

View Article and Find Full Text PDF

Impact of galectin-1's redox state on its lectin activity and monomer-dimer equilibrium. Focusing on oxidized Gal-1.

Int J Biol Macromol

January 2025

Institute of Biophysics, The Czech Academy of Sciences, v.v.i., Královopolská 135, 61200 Brno, Czech Republic. Electronic address:

Galectin-1 (Gal-1) displays unique sensitivity to oxidative inactivation which appears critical in regulating its spatial and temporal activity. The two physicochemical states, i.e.

View Article and Find Full Text PDF

Characterizing the precursors of byproducts formed by chlorine and chlorine dioxide disinfection using unknown screening analysis with Orbitrap mass spectrometry.

Sci Total Environ

January 2025

Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand; Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand. Electronic address:

Chlorine (Cl) and chlorine dioxide (ClO) are commonly used to disinfect water but unfavorable interactions with dissolved organic matter (DOM) result in the formation of disinfection byproducts (DBPs). This study investigated the formation of organic DBPs arising from Cl and ClO disinfections under different contact times in two surface waters in Thailand and Suwannee River natural organic matter with/without bromide using unknown screening analysis with Orbitrap mass spectrometry. Many CHOCl-DBPs and CHOBr-DBPs intermediates were rapidly formed during the initial period of contact (5-30 min).

View Article and Find Full Text PDF

Background: Several chemical studies described the physiological efficacy of 1,4- dihydropyridines (DHPs). DHPs bind to specific sites on the α1 subunit of L-type calcium channels, where they demonstrate a more pronounced inhibition of Ca2+ influx in vascular smooth muscle compared to myocardial tissue. This selective inhibition is the basis for their preferential vasodilatory action on peripheral and coronary arteries, a characteristic that underlies their therapeutic utility in managing hypertension and angina.

View Article and Find Full Text PDF

We present a strategy for enhancing Li conduction in block copolymer electrolytes by introducing trace amounts of Li salts into polystyrene--poly(ethylene oxide) (PS--PEO), wherein Li ions preferentially coordinate with the -OH end groups of the PEO chains, resulting in the formation of double primitive cubic (3̅) structures. Compared with TFSI anions in Li salts, smaller anions (PF and BF) could facilitate ion localization more effectively, expanding the salt concentration range for developing stable 3̅ structures. The 3̅ structures formed in PS--PEOs doped with LiBF at = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!