Photoelectron spectroscopy was used to explore changes in Fermi level alignment, within the pi-pi* gap, arising from modifications to the coupling chemistry of conjugated phenylene ethynylene oligomers to the Au surface. Self-assembled monolayers were formed employing either thiol (4,4'-ethynylphenyl-1-benzenethiol or OPE-T) or isocyanide (4,4'-ethynylphenyl-1-benzeneisocyanide or OPE-NC) coupling. The electronic density of states in the valence region of the two systems are nearly identical with the exception of a shift to higher binding energy by about 0.5 eV for OPE-NC. Corresponding shifts appear in C(1s) spectra and in the threshold near E(F). The lack of change in the optical absorption suggests that a rigid shift of the Fermi level within the pi-pi* gap is the major effect of modifying the coupling chemistry. Qualitative consideration of bonding in each case is used to suggest the influence of chemisorption-induced charge transfer as a potential explanation. Connections to other theoretical and experimental work on the effects of varying coupling chemistries are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp060228uDOI Listing

Publication Analysis

Top Keywords

fermi level
12
coupling chemistry
12
level alignment
8
pi-pi* gap
8
coupling
5
alignment self-assembled
4
self-assembled molecular
4
molecular layers
4
layers coupling
4
chemistry photoelectron
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!