The hydrogen storage capacity of binary THF-H(2) clathrate hydrate has been determined as a function of formation pressure, THF composition, and time. The amount of hydrogen stored in the stoichiometric hydrate increases with pressure and exhibits asymptotic (Langmuir) behavior to approximately 1.0 wt % H(2). This hydrogen concentration corresponds to one hydrogen molecule occupying each of the small 5(12) cavities and one THF molecule in each large 5(12)6(4) cavity in the hydrate framework. Contrary to previous reports, hydrogen storage was not increased upon decreasing the THF concentration below the stoichiometric 5.6 mol % solution to 0.5 mol %, at constant pressure, even after one week. This provides strong evidence that THF preferentially occupies the large 5(12)6(4) cavity over hydrogen, for the range of experimental conditions tested. The maximum amount of hydrogen stored in this binary hydrate was about 1.0 wt % at moderate pressure (<60 MPa) and is independent of the initial THF concentration over the range of conditions tested.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp062139n | DOI Listing |
Sci Rep
January 2025
Khuzestan Water & Power Authority (KWPA), Ahvaz, Iran.
Microgrid systems have evolved based on renewable energies including wind, solar, and hydrogen to make the satisfaction of loads far from the main grid more flexible and controllable using both island- and grid-connected modes. Albeit microgrids can gain beneficial results in cost and energy schedules once operating in grid-connected mode, such systems are vulnerable to malicious attacks from the viewpoint of cybersecurity. With this in mind, this paper explores a novel advanced attack model named the false transferred data injection (FTDI) attack aiming to manipulatively alter the power flowing from the microgrid to the upstream grid to raise voltage usability probability.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Zybio Inc, Chongqing, 400082, China.
Lipase (EC 3.1.1.
View Article and Find Full Text PDFSci Data
January 2025
Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
This contribution presents a comprehensive extension of the QM9 dataset (originally at 133 K molecules) with the calculation of G4MP2 enthalpies for 9,841 molecules, featuring up to nine heavy atoms. We present QM9-LOHC, a (de)hydrogenation dataset of 10,373 reactions, including a minimum of 5.5% weight hydrogen storage capacity in line with the Department of Energy standards for Liquid Organic Hydrogen Carriers (LOHC).
View Article and Find Full Text PDFFood Chem
January 2025
Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, China. Electronic address:
Processed cheese faces challenges related to short shelf life and susceptibility to microbial contamination during room temperature storage. Nisin, a natural antimicrobial peptide used for food preservation, exhibits limited sustained activity and a narrow antimicrobial spectrum, making its enhancement essential. To address these issues, this study employed electrostatic self-assembly technology to develop chitosan-pectin nanoparticles loaded with nisin (CNP) to improve processed cheese stability at room temperature.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore.
Electrochemical water splitting is a promising method for generating green hydrogen gas, offering a sustainable approach to addressing global energy challenges. However, the sluggish kinetics of the anodic oxygen evolution reaction (OER) poses a great obstacle to its practical application. Recently, increasing attention has been focused on introducing various external stimuli to modify the OER process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!