Acclimatization to chronic hypoxia involves numerous compensatory changes in many tissues, including blood vessels. The present data demonstrate that in addition to well-documented changes in contractility, chronic hypoxia also produces important changes in the mechanisms mediating endothelium-dependent vasodilatation. At the level of the endothelium, hypoxia attenuates endothelial release of NO and this appears to be mediated through reductions in eNOS specific activity; chronic hypoxia has little effect on eNOS abundance. In contrast, chronic hypoxia depresses the abundance of sGC, which functions as the downstream vascular receptor for NO released from the endothelium. The decreased abundance of sGC produced by chronic hypoxia occurs without changes in sGC specific activity and results in decreased rates of NO-induced cGMP synthesis. Nonetheless, the vasodilator efficacy of NO is enhanced in hypoxic arteries, which suggests that mechanisms downstream from sGC are upregulated by hypoxia. Consistent with this view, chronic hypoxia significantly depresses PDE activity, which serves to prolong cGMP half-life and enhance its vasodilator effects. It remains possible that chronic hypoxia may also enhance PKG activity and/or the abundance of its substrates; this possibility remains a promising topic for future investigation. Overall, it is important to recognize that the mechanisms of adaptation to chronic hypoxia identified in the present study may be somewhat unique to adult carotid arteries. Adaptive responses to chronic hypoxia can vary considerably between small and large arteries, and also between immature and adult arteries . Still, the present data clearly demonstrate that both the endothelium and vascular smooth muscle of major arteries are profoundly influenced by chronic hypoxia, and thereby participate fully in whole-body adaptation to reduced oxygen availability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/0-387-29540-2_14 | DOI Listing |
Brain Commun
December 2024
San Diego Biomedical Research Institute, San Diego, CA 92121, USA.
Hypoxia triggers blood-brain barrier disruption and a strong microglial activation response around leaky cerebral blood vessels. These events are greatly amplified in aged mice which is translationally relevant because aged patients are far more likely to suffer hypoxic events from heart or lung disease, and because of the pathogenic role of blood-brain barrier breakdown in vascular dementia. Importantly, it is currently unclear if disrupted cerebral blood vessels spontaneously repair and if they do, whether surrounding microglia deactivates.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China. Electronic address:
Objective: Pulmonary fibrosis (PF) is a chronic, progressive, and irreversible lung interstitial disease of unknown etiology with a fatal outcome. M2 macrophages have been recognized to play a significant role in PF pathogenesis. The role of protein hypoxia-inducible factor 1-α (HIF-1α) in M2 macrophage polarization in PF is largely unknown.
View Article and Find Full Text PDFMol Med
December 2024
Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China.
Background: Sleep apnea syndrome (SAS) is associated with hypertension and vascular remodeling. Hypoxia-inducible factor-1α (HIF-1α) and the Hippo-YAP pathway are implicated in these processes, but their specific roles remain unclear. This study investigated the HIF-1α/Hippo-YAP pathway in SAS-related hypertension.
View Article and Find Full Text PDFZh Nevrol Psikhiatr Im S S Korsakova
December 2024
Novosibirsk State Medical University, Novosibirsk, Russia.
Objective: To evaluate the effectiveness of complex rehabilitation measures using the drug Cortexin in children with neuropsychiatric pathology during a one-year follow-up.
Material And Methods: A promising dynamic examination and treatment of 323 children with neuropsychiatric pathology from the age of 7 days to 1 year, age 3.2±1.
Sci Rep
December 2024
Pharmacology Research Group, Universidad del Valle, Colombia, Cali, 760043.
Vascularized composite allotransplantation (VCA) represents a clinical challenge for transplant therapy, as it involves different tissues with unique immunogenicity. Even when receiving immunosuppressive therapy, they are more vulnerable to severe hypoxia, microvascular damage, and ultimately the rejection or chronic graft dysfunction after transplantation. This study aimed to develop a surgical protocol for VCA of the ear in a porcine biomodel in the absence of immunosuppression, maintaining the in vitro co-culture of the allograft and assessing their relationship with allograft survival.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!