Three monoclonal antibodies directed against human platelet myosin heavy chains (MCH) that recognize homologous sequences contained within the functionally active subfragment-1, in platelet and rabbit skeletal muscle myosin were studied. These antibodies are distinguished by their affinities to different myosins and their differential effect on various ATPase activities. Epitope mapping was accomplished by analyzing antibody binding to proteolytic peptides of myosin head subfragment-1 under various experimental conditions. The epitopes recognized by these anti-human platelet MHC monoclonal antibodies reside within a small region of the 50 kDa fragment, beginning 9 kDa from its C-terminus and extending a stretch of 6 kDa towards the N-terminus. These epitopes lie between residues 535-586, and are contained within a highly conserved area of myosin heavy chain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0167-4838(90)90238-bDOI Listing

Publication Analysis

Top Keywords

monoclonal antibodies
12
human platelet
8
platelet myosin
8
highly conserved
8
kda fragment
8
myosin heavy
8
myosin
6
characterization monoclonal
4
antibodies
4
antibodies human
4

Similar Publications

New therapeutic agents in oncology are emerging rapidly, both in terms of the number of approved drugs and the technological and biological innovation of new treatments. Antibody-drug conjugates (ADC) offer a promising cancer therapy by specifically targeting tumor cells. ADC are composed of a monoclonal antibody recognizing the tumor cell via specific antigens, coupled with a potent cytotoxic agent that resembles classical chemotherapy.

View Article and Find Full Text PDF

Hepatoid adenocarcinoma of the stomach (HAS) is a rare subtype of gastric cancer characterized by histological features resembling hepatocellular carcinoma. Surgical intervention remains the preferred treatment modality for eligible patients. However, the efficacy of neoadjuvant therapy and alternative treatment regimens has been found to be suboptimal.

View Article and Find Full Text PDF

Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) caused by pathogenic immunoglobulin G antibodies to myelin oligodendrocyte glycoprotein is a rare demyelinating disease of the central nerve system (CNS). The clinical phenotypes of MOGAD include acute disseminated encephalomyelitis, optic neuritis, and transverse myelitis. At present, the mechanism underlying the disease is unknown.

View Article and Find Full Text PDF

Pediatric-Onset Multiple Sclerosis (POMS) is characterized by both white and grey matter inflammation, as well as by a higher risk of long-term physical and cognitive disability. The peculiar immunopathogenic mechanisms of POMS suggests that the use of induction therapies, including alemtuzumab (ALTZ), might be a promising approach, at least for postpuberal (> 11 yo) POMS. Although no data on the use of induction therapies in POMS are available from clinical trials currently, case series or case reports on the effect of alemtuzumab (ALTZ) have been recently published.

View Article and Find Full Text PDF

NK cells are a type of antitumor immune cell with promising clinical application, following T cells. The activity of NK cells is primarily regulated by their surface receptors and immune microenvironment. In gliomas, the tumor microenvironment exerts a strong immunosuppressive effect, which significantly reduces the clinical efficacy of NK cell immunotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!