We present what we believe to be the first results of a light-scattering analysis on several Chebyshev particles characterized by higher orders. Chebyshev particles of comparatively lower orders were used in the past to study the effects of nonspherical but concave geometries in remote sensing applications. We will show that, based on the developed methodology, accurate results can also be obtained for particles of higher orders exhibiting a more pronounced surface waviness. The achieved results demonstrate that higher-order Chebyshev particles can be used to estimate the influence of a weak surface roughness on the light-scattering behavior of the underlying smooth scatterer. The effects obtained correspond with the results of other approaches and with the theoretical expectations of a weak surface roughness. In contrast to what is known for regular particles, there can be observed an essential difference between the phase functions of the underlying spherical scatterer and the corresponding higher-order Chebyshev particle if a higher absorptivity of the scattering medium is considered. This paper demonstrates additionally that Chebyshev polynomials can be simply combined with smooth geometries other than spheres.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.45.006030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!