A selective and differential plating medium, R & F anthracis chromogenic agar (ACA), has been developed for isolating and identifying presumptive colonies of Bacillus anthracis. ACA contains the chromogenic substrate 5-bromo-4-chloro-3-indoxyl-choline phosphate that upon hydrolysis yields teal (blue green) colonies indicating the presence of phosphatidylcholine-specific phospholipase C (PC-PLC) activity. Among seven Bacillus species tested on ACA, only members of the Bacillus cereus group (B. anthracis, B. cereus, and B. thuringiensis) produced teal colonies (PC-PLC positive) having cream rings. Examination of colony morphology in 18 pure culture strains of B. anthracis (15 ATCC strains plus AMES-1-RIID, ANR-1, and AMED-RIID), with one exception, required 48 h at 35 to 37 degrees C for significant color production, whereas only 24 h was required for B. cereus and B. thuringiensis. This differential rate of PC-PLC synthesis in B. anthracis (due to the truncated plcR gene and PlcR regulator in B. anthracis) allowed for the rapid differentiation on ACA of presumptive colonies of B. anthracis from B. cereus and B. thuringiensis in both pure and mixed cultures. Effective recovery of B. anthracis from a variety of matrices having both high (soil and sewage) and low microbial backgrounds (cloth, paper, and blood) spiked with B. anthracis ANR-1 spores suggests the probable utility of ACA plating for B. anthracis recovery in a diversity of applications.

Download full-text PDF

Source
http://dx.doi.org/10.4315/0362-028x-69.8.2002DOI Listing

Publication Analysis

Top Keywords

cereus thuringiensis
12
anthracis
11
chromogenic agar
8
bacillus anthracis
8
bacillus cereus
8
presumptive colonies
8
anthracis cereus
8
bacillus
6
cereus
5
aca
5

Similar Publications

This study investigates the potential of chromium (VI) resistant bacterial isolates to alleviate heavy metal stress in fodder maize plants and enhance phytoremediation. Twenty-one bacterial strains were isolated from contaminated water, with five strains; (BHR1) (BHR2), (BHR4), (BHR5) and (BHR6) selected based on their significant plant-growth promoting (PGP) traits and heavy metal tolerance. Under chromium (Cr VI) stress, the BHR1 strain significantly improved seed germination, seedling length and vigor index of fodder maize variety (J 1007) especially at 150 mg/L Cr (VI), where these parameters increased by 3.

View Article and Find Full Text PDF

The group represents a serious risk in powdered and amylaceous foodstuffs. Cold plasma (the fourth state of matter) is emerging as an alternative effective nonthermal technology for pasteurizing a wide range of matrices in solid, liquid, and powder form. The present study aims to evaluate the mechanisms involved in inactivation via cold plasma, focusing on (i) the technology's ability to generate damage in cells (at the morphological and molecular levels) and (ii) studying the effectiveness of cold plasma in biofilm mitigation through the direct effect and inhibition of the biofilm-forming capacity of sublethally damaged cells post-treatment.

View Article and Find Full Text PDF

The Bacillus cereus group is comprised of diverse yet closely related species that are ubiquitous in nature. These Gram-positive, spore-forming bacteria are commonly isolated as potential pathogens in environmental and food samples, and they are also beneficially used in industrial applications such as probiotics or agricultural pesticides. Although phylogenetic and genomic analyses identified eight formally recognized species within the Bacillus cereus group, only five members are currently acknowledged using standardized isolation procedures.

View Article and Find Full Text PDF

Bacterial consortium amendment effectively reduces Pb/Cd bioavailability in soil and their accumulation in wheat.

J Environ Manage

November 2024

State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; College of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China. Electronic address:

Microbial remediation can maintain the sustainability of farmlands contaminated with heavy metals (HMs). However, the effects of bacterial consortium on crop growth and potential risks under HM stress, as well as its mechanisms, are still unclear compared with a single microorganism. Here, we investigated the effect of a bacterial consortium consisting of some HMs-resistant bacteria, including Bacillus cereus, Bacillus thuringiensis, and Herbaspirillum huttiense, on plant growth promotion and inhibition of Pb/Cd accumulation within different contaminated soil-wheat systems through pot experiments.

View Article and Find Full Text PDF

Background: Bacillus thuringiensis SY49.1 (Bt SY49.1) strain has promising insecticidal and fungicidal activity against phytopathogens and pests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!