Background: The G2/M cell-cycle arrest is one mechanism by which genistein exerts its anti-proliferative effects, and the proposed underlying causes encompass the transcriptional repression of cyclin B1 and the activation of p21. However, the involvement of upstream kinases Myt-1 and Wee-1 in this arrest remains to be elucidated.

Methods: Myt-1 and Wee-1 modulation by genistein was examined via Western blot analysis and the effect of their inhibition by siRNA on cyclin B1 levels/localization, cdc2 kinase activity, and cellular proliferation of genistein-treated TRAMP-C2 cells was determined.

Results: The sustained G2/M arrest by genistein in TRAMP-C2 cells is associated with increased phospho-cdc2(Tyr15), decreased cdc2 protein, and cytoplasmic retention of cyclinB1, resulting in decreased cdc2 kinase activity independently of p21. Genistein treatment increased Myt-1 levels and decreased Wee-1 phosphorylation. Downregulation of Myt-1 and Wee-1 by siRNA restored cdc2 levels, its kinase activity, cyclinB1 nuclear localization, and partially restored cell proliferation of genistein-treated cells.

Conclusions: Myt-1 and Wee-1 rather than p21 are necessary for genistein-induced G2/M arrest in TRAMP-C2 cells and their inhibition partially restores proliferation of TRAMP-C2 cells in the presence of genistein.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pros.20495DOI Listing

Publication Analysis

Top Keywords

myt-1 wee-1
20
tramp-c2 cells
16
kinase activity
12
cdc2 kinase
8
proliferation genistein-treated
8
g2/m arrest
8
decreased cdc2
8
wee-1
6
genistein
6
cells
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!