Putrescine N-methyltransferase (PMT, EC 2.1.1.53) catalyses the S-adenosyl- L-methionine (SAM or AdoMet)-dependent methylation of putrescine to N-methylputrescine within the biosynthetic pathways of calystegines, nicotine, and tropane alkaloids in medicinal plants and produces S-adenosyl- L-homocysteine (SAH or AdoHcy). Determination of PMT activity was time-consuming and hardly reproducible in the past because it required tedious separation steps after chemical derivatisation or radioactive labelling of N-methylputrescine. A convenient and accurate enzyme-coupled colorimetric assay is based on the conversion of SAH to homocysteine by 5'-methylthioadenosine/ S-adenosylhomocysteine nucleosidase (MTAN/SAHN, EC 3.2.2.9) and S-ribosylhomocysteine lyase (LuxS, EC 4.4.1.21). Homocysteine is quantified by 5,5'-dithiobis-2-nitrobenzoic acid. Putrescine was shown not to interfere with MTAN or LuxS. The colorimetric assay was validated by HPLC analysis. K(m) values determined by the assay, 108 microM for putrescine and 42 microM for SAM, are lower than the previously reported values, due to alleviation of PMT inhibition by SAH. DTNB:5,5'-dithiobis-2-nitrobenzoic acid LuxS: S-ribosylhomocysteine lyase MTAN:5'-methylthioadenosine nucleosidase PMT:putrescine N-methyltransferase SAH: S-adenosyl- L-homocysteine SAM: S-adenosyl- L-methionine TNB:2-nitro-5-thiobenzoic acid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-2006-947191 | DOI Listing |
Life (Basel)
May 2024
Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU) Alnarp, Sundsvägen 10, P.O. Box 190, SE-234 22 Lomma, Sweden.
Scopolamine and atropine are two medicinal alkaloids derived from L. with anticholinergic properties. This study explored how methyl jasmonate (MJ), a plant growth regulator, affects the biosynthesis and accumulation of these alkaloids in different plant tissues.
View Article and Find Full Text PDFProtoplasma
March 2024
Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
This study aimed to investigate the effects of clinorotation induced by 2-D clinostat on the growth, tropane alkaloid production, gene expression, antioxidant capacity, and cellular defense responses in the callus tissue of Hyoscyamus niger. Callus induction was conducted by putting hypocotyl explants in the MS culture medium supplemented with 1 mgL 2,4-D and 1 mgL BAP growth regulators. The sub-cultured calli were placed on a clinostat for 0, 3, 7, and 10 days (2.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2023
Department of Biology, Garmsar Branch, Islamic Azad University, Garmsar, Iran.
Atropine is a well-known tropane alkaloid commonly employed in medicine class called anticholinergics. This study intends to address biochemical and molecular responses of Datura inoxia calluses to fortifying culture medium with carboxylic acid-functionalized multi-walled carbon nanotubes (COOH-MWCNTs). The application of MWCNTs influenced callogenesis performance and biomass in a dose-dependent manner.
View Article and Find Full Text PDFProtoplasma
November 2023
Department of Biology, Garmsar Branch, Islamic Azad University, Garmsar, Iran.
Few investigations have tested the practical use of cold plasma as a novel technology to meet the requirements in the plant cell and tissue culture field. To fill the knowledge gap, we intend to respond to the question of whether plasma priming influenced DNA ultrastructure and the production of atropine (a tropane alkaloid) in Datura inoxia. Calluses were treated with the corona discharge plasma at time durations ranging from 0 to 300 s.
View Article and Find Full Text PDFPlant Physiol
January 2022
Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
MYB transcription factors play essential roles in regulating plant secondary metabolism and jasmonate (JA) signaling. Putrescine N-methyltransferase is a key JA-regulated step in the biosynthesis of nicotine, an alkaloidal compound highly accumulated in Nicotiana spp. Here we report the identification of NtMYB305a in tobacco (Nicotiana tabacum) as a regulatory component of nicotine biosynthesis and demonstrate that it binds to the JA-responsive GAG region, which comprises a G-box, an AT-rich motif, and a GCC-box-like element, in the NtPMT1a promoter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!