A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A mycothiol synthase mutant of Mycobacterium tuberculosis has an altered thiol-disulfide content and limited tolerance to stress. | LitMetric

Mycothiol (MSH) (acetyl-Cys-GlcN-Ins) is the major low-molecular-mass thiol in Mycobacterium tuberculosis. MSH has antioxidant activity, can detoxify a variety of toxic compounds, and helps to maintain the reducing environment of the cell. The production of MSH provides a potential novel target for tuberculosis treatment. Biosynthesis of MSH requires at least four genes. To determine which of these genes is essential in M. tuberculosis, we have been constructing targeted gene disruptions. Disruption in the mshC gene is lethal to M. tuberculosis, while disruption in the mshB gene results in MSH levels 20 to 100% of those of the wild type. For this study, we have constructed a targeted gene disruption in the mshD gene that encodes mycothiol synthase, the final enzyme in MSH biosynthesis. The mshD mutant produced approximately 1% of normal MSH levels but high levels of the MshD substrate Cys-GlcN-Ins and the novel thiol N-formyl-Cys-GlcN-Ins. Although N-formyl-Cys-GlcN-Ins was maintained in a highly reduced state, Cys-GlcN-Ins was substantially oxidized. In both the wild type and the mshD mutant, cysteine was predominantly oxidized. The M. tuberculosis mshD mutant grew poorly on agar plates lacking catalase and oleic acid and in low-pH media and had heightened sensitivity to hydrogen peroxide. The inability of the mshD mutant to survive and grow in macrophages may be associated with its altered thiol-disulfide status. It appears that N-formyl-Cys-GlcN-Ins serves as a weak surrogate for MSH but is not sufficient to support normal growth of M. tuberculosis under stress conditions such as those found within the macrophage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1595396PMC
http://dx.doi.org/10.1128/JB.00393-06DOI Listing

Publication Analysis

Top Keywords

mshd mutant
16
mycothiol synthase
8
mycobacterium tuberculosis
8
altered thiol-disulfide
8
msh
8
targeted gene
8
msh levels
8
wild type
8
tuberculosis
7
mshd
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!