Crowding and confinement effects on protein diffusion in vivo.

J Bacteriol

Department of Chemistry, University of Wisconsin-Madison, Madison, 1101 University Avenue, WI 53706, USA.

Published: September 2006

The first in vivo measurements of a protein diffusion coefficient versus cytoplasmic biopolymer volume fraction are presented. Fluorescence recovery after photobleaching yields the effective diffusion coefficient on a 1-mum-length scale of green fluorescent protein within the cytoplasm of Escherichia coli grown in rich medium. Resuspension into hyperosmotic buffer lacking K+ and nutrients extracts cytoplasmic water, systematically increasing mean biopolymer volume fraction, , and thus the severity of possible crowding, binding, and confinement effects. For resuspension in isosmotic buffer (osmotic upshift, or Delta, of 0), the mean diffusion coefficient, , in cytoplasm (6.1 +/- 2.4 microm2 s(-1)) is only 0.07 of the in vitro value (87 microm2 s(-1)); the relative dispersion among cells, sigmaD/ (standard deviation, sigma(D), relative to the mean), is 0.39. Both and sigmaD/ remain remarkably constant over the range of Delta values of 0 to 0.28 osmolal. For a Delta value of > or =0.28 osmolal, formation of visible plasmolysis spaces (VPSs) coincides with the onset of a rapid decrease in by a factor of 380 over the range of Delta values of 0.28 to 0.70 osmolal and a substantial increase in sigmaD/. Individual values of D vary by a factor of 9 x 10(4) but correlate well with f(VPS), the fractional change in cytoplasmic volume on VPS formation. The analysis reveals two levels of dispersion in D among cells: moderate dispersion at low Delta values for cells lacking a VPS, perhaps related to variation in phi or biopolymer organization during the cell cycle, and stronger dispersion at high Delta values related to variation in f(VPS). Crowding effects alone cannot explain the data, nor do these data alone distinguish crowding from possible binding or confinement effects within a cytoplasmic meshwork.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1595386PMC
http://dx.doi.org/10.1128/JB.01982-05DOI Listing

Publication Analysis

Top Keywords

delta values
16
confinement effects
12
diffusion coefficient
12
protein diffusion
8
biopolymer volume
8
volume fraction
8
crowding binding
8
binding confinement
8
microm2 s-1
8
dispersion cells
8

Similar Publications

Background: In this study, thermophilic pectinase-producing strains were isolated. Among all the isolates, strain No. 4 was identified as Aspergillus fumigatus BT-4 based on its morphology and 18 S rDNA analysis.

View Article and Find Full Text PDF

Altered thrombin generation with prothrombin complex concentrate is not detected by viscoelastic testing: an in vitro study.

Br J Anaesth

January 2025

Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Department of Anesthesiology and Intensive Care Medicine AUVA Trauma Center Salzburg, Academic Teaching Hospital of the Paracelsus Medical University, Salzburg, Austria.

Background: Bleeding guidelines currently recommend use of viscoelastic testing (VET) to direct haemostatic resuscitation in severe haemorrhage. However, VET-derived parameters of clot initiation, such as clotting time (CT) and activated clotting time (ACT), might not adequately reflect a clinically relevant interaction of procoagulant and anticoagulant activity, as revealed by thrombin generation assays. The aim of this study was to evaluate the ability of CT and ACT to indicate thrombin generation activity.

View Article and Find Full Text PDF

Analysis of the spatiotemporal trends of urban scale and urban vitality on ecosystem services balance provides an essential basis for regional sustainable development. This study employs the Spatial Durbin Model (SDM), Spatial Autoregressive Model (SAR), and Geographically and Temporally Weighted Regression (GTWR) to effectively capture spatiotemporal associations between urban scale, urban vitality, and ecosystem services supply-demand balance, providing a detailed view of regional variations. The integrated framework combines spatiotemporal analysis, predictive scenario simulation, and importance-performance analysis to quantify and strategize urban impacts on ESs.

View Article and Find Full Text PDF

The derivation of water quality criteria (WQC) for antibiotics is influenced by the inclusion of various organisms' toxicity data, including microbial data, though no definitive conclusions have been reached. This study focuses on sulfonamide antibiotics, common in the Yangtze River Delta (YRD), to assess the influences of different organisms' toxicity data on determining WQCs and subsequent evaluation of ecological risks. A total of 263 toxicity data points from eight sulfonamides, including sulfamethoxazole (SMX) and sulfamethazine (SM2), were selected to derive WQCs using Species Sensitivity Distribution (SSD) methods.

View Article and Find Full Text PDF

Knowledge of gross human anatomy among Brazilian physical education students: A cross-sectional study.

Morphologie

January 2025

Laboratório de Anatomia Humana, Instituto de Educação Física e Esportes, Universidade Federal do Ceará, Fortaleza, Brazil; Programa de Pós-Graduação em Ciências Morfofuncionais, Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Brazil. Electronic address:

Background: Gross human anatomy is essential in undergraduate programs across biological and health sciences. While extensive literature explores medical students' knowledge in this area, studies on non-medical students, particularly those in physical education, are scarce.

Objective: This study assessed the anatomy knowledge among Brazilian physical education students and explored differences based on employment status, type of class instruction (face-to-face vs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!