The human reduced folate carrier (hRFC) facilitates membrane transport of folates and antifolates. hRFC is characterized by 12 transmembrane domains (TMDs). To identify residues or domains involved in folate binding, we used substituted cysteine (Cys) accessibility methods (SCAM) with sodium (2-sulfonatoethyl)methanethiosulfonate (MTSES). We previously showed that residues in TMD11 of hRFC were involved in substrate binding, whereas those in TMD12 were not (Hou, Z., Stapels, S. E., Haska, C. L., and Matherly, L. H. (2005) J. Biol. Chem. 280, 36206-36213). In this study, 232 Cys-substituted mutants spanning TMDs 1-10 and conserved stretches within the TMD6-7 (residues 204-217) and TMD10-11 connecting loop domains were transiently expressed in hRFC-null HeLa cells. All Cys-substituted mutants showed moderate to high levels of expression on Western blots, and only nine mutants including R133C, I134C, A135C, Y136C, S138C, G163C, Y281C, R373C, and S313C were inactive for methotrexate transport. MTSES did not inhibit transport by any of the mutants in TMDs 1, 3, 6, and 9 or for positions 204-217. Whereas most of the mutants in TMDs 2, 4, 5, 7, 8, and 10, and in the TMD10-11 connecting loop were insensitive to MTSES, this reagent inhibited methotrexate transport (25-75%) by 26 mutants in these TMDs. For 13 of these (Y126C, S137C, V160C, S168C, W274C, S278C, V284C, V288C, A311C, T314C, Y376C, Q377C, and V380C), inhibition was prevented by leucovorin, another hRFC substrate. Combined with our previous findings, these results implicate amino acids in TMDs 4, 5, 7, 8, 10, and 11, but not in TMDs 1, 2, 3, 6, 9, or 12, as important structural or functional components of the putative hydrophilic cavity for binding of anionic folate substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M607049200DOI Listing

Publication Analysis

Top Keywords

mutants tmds
12
transmembrane domains
8
human reduced
8
reduced folate
8
folate carrier
8
structural functional
8
functional components
8
folate substrates
8
cys-substituted mutants
8
tmd10-11 connecting
8

Similar Publications

Tetraspanins superfamily proteins have been shown to play an important role in several physiological processes and diseases such as cancer. Transmembrane polar residues of tetraspanins have an implication in regulating the process of cancer metastasis. Tetraspanin CD82 has been demonstrated to exert an anti-metastatic role while mutating polar residues in its transmembrane domains (TMDs) abrogates its metastasis inhibitory role.

View Article and Find Full Text PDF

Substrate Selection Criteria in Regulated Intramembrane Proteolysis.

ACS Chem Neurosci

April 2024

Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

Alzheimer's disease is the most common form of dementia encountered in an aging population. Characteristic amyloid deposits of Aβ peptides in the brain are generated through cleavage of amyloid precursor protein (APP) by γ-secretase, an intramembrane protease. Cryo-EM structures of substrate γ-secretase complexes revealed details of the process, but how substrates are recognized and enter the catalytic site is still largely ignored.

View Article and Find Full Text PDF

Structural and functional insights into the lipid regulation of human anion exchanger 2.

Nat Commun

January 2024

Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.

Anion exchanger 2 (AE2) is an electroneutral Na-independent Cl/HCO exchanger belongs to the SLC4 transporter family. The widely expressed AE2 participates in a variety of physiological processes, including transepithelial acid-base secretion and osteoclastogenesis. Both the transmembrane domains (TMDs) and the N-terminal cytoplasmic domain (NTD) are involved in regulation of AE2 activity.

View Article and Find Full Text PDF

Transmembrane protein 72 (TMEM72) is involved in normal kidney development and tumorigenesis in renal cell carcinoma. However, the function of TMEM72 has not been experimentally examined; therefore, the role of TMEM72 is incompletely understood. In this study, we initially demonstrated that TMEM72 has four transmembrane domains (TMDs) and a long C-terminal tail.

View Article and Find Full Text PDF

Synaptophysin (syp) is a major protein of secretory vesicles with four transmembrane domains (TMDs) and a large cytoplasmic C-terminus. Syp has been shown to regulate exocytosis, vesicle cycling, and synaptic plasticity through its C-terminus. However, the roles of its TMDs remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!