Mutational and bioinformatics analysis of proline- and glycine-rich motifs in vesicular acetylcholine transporter.

J Neurochem

Department of Chemistry and Biochemistry and Neuroscience Research Institute, University of California, Santa Barbara, California 93106-9510, USA.

Published: September 2006

The vesicular acetylcholine transporter (VAChT) contains six conserved sequence motifs that are rich in proline and glycine. Because these residues can have special roles in the conformation of polypeptide backbone, the motifs might have special roles in conformational changes during transport. Using published bioinformatics insights, the amino acid sequences of the 12 putative, helical, transmembrane segments of wild-type and mutant VAChTs were analyzed for propensity to form non-alpha-helical conformations and molecular notches. Many instances were found. In particular, high propensity for kinks and notches are robustly predicted for motifs D2, C and C'. Mutations in these motifs either increase or decrease Vmax for transport, but they rarely affect the equilibrium dissociation constants for ACh and the allosteric inhibitor, vesamicol. The near absence of equilibrium effects implies that the mutations do not alter the backbone conformation. In contrast, the Vmax effects demonstrate that the mutations alter the difficulty of a major conformational change in transport. Interestingly, mutation of an alanine to a glycine residue in motif C significantly increases the rates for reorientation across the membrane. These latter rates are deduced from the kinetics model of the transport cycle. This mutation is also predicted to produce a more flexible kink and tighter tandem notches than are present in wild-type. For the full set of mutations, faster reorientation rates correlate with greater predicted propensity for kinks and notches. The results of the study argue that conserved motifs mediate conformational changes in the VAChT backbone during transport.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2006.03975.xDOI Listing

Publication Analysis

Top Keywords

vesicular acetylcholine
8
acetylcholine transporter
8
special roles
8
conformational changes
8
propensity kinks
8
kinks notches
8
mutations alter
8
motifs
6
transport
5
mutational bioinformatics
4

Similar Publications

Binding mechanism and antagonism of the vesicular acetylcholine transporter VAChT.

Nat Struct Mol Biol

January 2025

Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.

The vesicular acetylcholine transporter (VAChT) has a pivotal role in packaging and transporting acetylcholine for exocytotic release, serving as a vital component of cholinergic neurotransmission. Dysregulation of its function can result in neurological disorders. It also serves as a target for developing radiotracers to quantify cholinergic neuron deficits in neurodegenerative conditions.

View Article and Find Full Text PDF

Innervation of the female internal genital organs in 12-week-old porcine foetuses.

Pol J Vet Sci

December 2024

Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland.

This is the first study aimed to investigate the innervation of the internal genital organs in 12-week-old female pig foetuses using single and double-labelling immunofluorescence methods. Immunostaining for protein gene product 9.5 (PGP, general neural marker) revealed that the most numerous PGP-positive nerve fibres were found in the mesenchyme of the uterovaginal canal height.

View Article and Find Full Text PDF

Regional cerebral cholinergic vesicular transporter correlates of visual contrast sensitivity in Parkinson's disease: Implications for visual and cognitive function.

Parkinsonism Relat Disord

December 2024

Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA; Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA; Functional Neuroimaging, Cognitive, and Mobility Laboratory, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.

Visual and visual processing deficits are implicated in freezing, falling, and cognitive impairments in Parkinson's disease (PD). In particular, contrast sensitivity deficits are common and may be related to cognitive impairment in PD. While dopaminergic deficits play a role in PD-related visual dysfunction, brain cholinergic systems also modulate many aspects of visual processing.

View Article and Find Full Text PDF

Microplastic is an environmental hazard to which both animals and humans are exposed. Current reports show that it can cause inflammation, including in the gastrointestinal tract. To examine the impact on the ileum, 15 eight-week-old gilts (five individuals/group) were exposed to PET microplastics (7.

View Article and Find Full Text PDF

Growing evidence indicates that brain-derived neurotrophic factor (BDNF) is produced in contracting skeletal muscles and is secreted as a myokine that plays an important role in muscle metabolism. However, the involvement of muscle-generated BDNF and the regulation of its vesicular trafficking, localization, proteolytic processing, and spatially restricted release during the development of vertebrate neuromuscular junctions (NMJs) remain largely unknown. In this study, we first reported that BDNF is spatially associated with the actin-rich core domain of podosome-like structures (PLSs) at topologically complex acetylcholine receptor (AChR) clusters in cultured Xenopus muscle cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!