ATR-dependent activation of the kinase Chk1 is the initial step in signal transduction in the DNA replication checkpoint, which allows a cell to enter mitosis only after the completion of DNA replication. TopBP1-related proteins in higher eukaryotes are implicated in the replication checkpoint, but their exact role remains elusive because of their requirements for replication initiation. Here we report that the initiation function of Xenopus Cut5/TopBP1 could be entirely separated from its checkpoint function: the N-terminal half fragment, a region of Cut5 conserved through evolution, is sufficient for initiation, but is incapable of activating the checkpoint; the C-terminal half fragment, which is unique in metazoan species, is by itself capable of activating the checkpoint response without initiating replication. Upon the activation of Chk1, the Ser1131 within the C-terminal region of Cut5 is phosphorylated, and this phosphorylation is critical for the checkpoint response. Furthermore, Cut5 directly stimulated Chk1 phosphorylation in the in vitro kinase assay reconstituted with recombinant proteins and ATR immunoprecipitated from extracts. On the basis of replication protein A (RPA)-dependent loading of Cut5 on to replicating and replication-arrested chromatin, we propose that Cut5 plays a crucial role in the initial amplification step of the ATR-Chk1 signaling pathway at the stalled replication fork.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2443.2006.00998.x | DOI Listing |
DNA Repair (Amst)
September 2009
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States.
The DNA damage and replication checkpoint kinase Mec1/ATR is a member of the PI3-kinase related kinases that function in response to various genotoxic stresses. The checkpoint clamp 9-1-1 (Rad9-Rad1-Hus1 in S. pombe and mammals; Ddc1-Rad17-Mec3 in S.
View Article and Find Full Text PDFJ Biol Chem
December 2008
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
The Saccharomyces cerevisiae Mec1-Ddc2 protein kinase (human ATR-ATRIP) initiates a signal transduction pathway in response to DNA damage and replication stress to mediate cell cycle arrest. The yeast DNA damage checkpoint clamp Ddc1-Mec3-Rad17 (human Rad9-Hus1-Rad1: 9-1-1) is loaded around effector DNA and thereby activates Mec1 kinase. Dpb11 (Schizosaccharomyces pombe Cut5/Rad4 or human TopBP1) is an essential protein required for the initiation of DNA replication and has a role in checkpoint activation.
View Article and Find Full Text PDFCell Cycle
May 2007
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
The yeast checkpoint protein kinase Mec1, the ortholog of human ATR, is the essential upstream regulator of the cell cycle checkpoint in response to DNA damage and to stalling of DNA replication forks. The activity of Mec1/ATR is not directly regulated by the DNA substrates that signal checkpoint activation. Rather the signal appears to be transduced to Mec1 by factors that interact with the signaling DNA substrates.
View Article and Find Full Text PDFGenes Cells
September 2006
Department of Bioscience, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
ATR-dependent activation of the kinase Chk1 is the initial step in signal transduction in the DNA replication checkpoint, which allows a cell to enter mitosis only after the completion of DNA replication. TopBP1-related proteins in higher eukaryotes are implicated in the replication checkpoint, but their exact role remains elusive because of their requirements for replication initiation. Here we report that the initiation function of Xenopus Cut5/TopBP1 could be entirely separated from its checkpoint function: the N-terminal half fragment, a region of Cut5 conserved through evolution, is sufficient for initiation, but is incapable of activating the checkpoint; the C-terminal half fragment, which is unique in metazoan species, is by itself capable of activating the checkpoint response without initiating replication.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2002
Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263-0001, USA.
The eukaryotic intra-S-phase checkpoint, which slows DNA synthesis in response to DNA damage, is poorly understood. Is DNA damage recognized directly, or indirectly through its effects on replication forks? Is the slowing of S phase in part because of competition between DNA synthesis and recombination/repair processes? The results of our genetic analyses of the intra-S-phase checkpoint in the fission yeast, Schizosaccharomyces pombe, suggest that the slowing of S phase depends weakly on the helicases Rqh1 and Srs2 but not on other recombination/repair pathways. The slowing of S phase depends strongly on the six checkpoint-Rad proteins, on Cds1, and on Rad4/Cut5 (similar to budding yeast Dpb11, which interacts with DNA polymerase epsilon) but not on Rhp9 (similar to budding yeast Rad9, necessary for direct damage recognition).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!