Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
2,4-dichlorophenoxyacetic acid (2,4-D), a chemical analogue of indole-3-acetic acid (IAA), is widely used as a growth regulator and exogenous source of auxin. Because 2,4-D evokes physiological and molecular responses similar to those evoked by IAA, it is believed that they share a common response pathway. Here, we show that a mutant, antiauxin resistant1 (aar1), identified in a screen for resistance to the anti-auxin p-chlorophenoxy-isobutyric acid (PCIB), is resistant to 2,4-D, yet nevertheless responds like the wild-type to IAA and 1-napthaleneacetic acid in root elongation and lateral root induction assays. That the aar1 mutation alters 2,4-D responsiveness specifically was confirmed by analysis of GUS expression in the DR5:GUS and HS:AXR3NT-GUS backgrounds, as well as by real-time PCR quantification of IAA11 expression. The two characterized aar1 alleles both harbor multi-gene deletions; however, 2,4-D responsiveness was restored by transformation with one of the genes missing in both alleles, and the 2,4-D-resistant phenotype was reproduced by decreasing the expression of the same gene in the wild-type using an RNAi construct. The gene encodes a small, acidic protein (SMAP1) with unknown function and present in plants, animals and invertebrates but not in fungi or prokaryotes. Taken together, these results suggest that SMAP1 is a regulatory component that mediates responses to 2,4-D, and that responses to 2,4-D and IAA are partially distinct.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-313X.2006.02832.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!