A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interactions of a fungistatic antibiotic, griseofulvin, with phospholipid monolayers used as models of biological membranes. | LitMetric

Griseofulvin (GF) is an oral antibiotic for widely occurring superficial mycosis in man and animals caused by dermaphyte fungi; it is also used in agriculture as a fungicide. The mechanism of the biological activity of GF is poorly understood. Here, the interactions of griseofulvin with lipid membranes were studied using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), and 1,2-myristoyl-sn-glycero-3-phosphoethanolamine (DMPE) monolayers spread at the air/water interface. Surface pressure (Pi), electric surface potential (Delta V), grazing incidence X-ray diffraction (GIXD), and Brewster angle microscopy (BAM) were used for studying pure phospholipid monolayers spread on GF aqueous solutions, as well as mixed phospholipid/GF monolayers spread on pure water subphase. Moreover, phospholipase A2 (PLA2) activity toward DLPC monolayers and molecular modeling of the GF surface and lipophilic properties were used to get more insight into the mechanisms of GF-membrane interactions. The results obtained show that GF has a meaningful impact on the film properties; we propose that nonpolar interactions are by and large responsible for GF retention in the monolayers. The modification of membrane properties can be detected using both physicochemical and enzymatic methods. The results obtained may be relevant for elaborating GF preparations with increased bioavailability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la060998xDOI Listing

Publication Analysis

Top Keywords

monolayers spread
12
phospholipid monolayers
8
monolayers
6
interactions
4
interactions fungistatic
4
fungistatic antibiotic
4
antibiotic griseofulvin
4
griseofulvin phospholipid
4
monolayers models
4
models biological
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!