The ability to attach DNA molecules to solid planar substrates is desired for imaging the molecule and for building DNA-mediated nanostructures. The deposition of DNA on [001] rutile and beta-gallia rutile (BGR) substrates from buffer solutions containing various divalent cations was studied using tapping mode atomic force microscopy (AFM). beta-Gallia rutile intergrowths were prepared by spin-coating gallium isopropoxide onto [001]-oriented TiO2 single-crystal slabs and heating above 1350 degrees C for >24 h, resulting in the formation of intergrowth lines along the {210} planes in the parent rutile structure. Rutile and BGR intergrowth substrates were exposed to various buffered solutions containing DNA and the following divalent cations: Ca(II), Co(II), Cu(II), Fe(II), Mg(II), Mn(II), Ni(II), and Zn(II). Among all the cations examined, only Ni(II) resulted in the attachment of DNA on the rutile surfaces. DNA attachment to BGR surfaces was strong enough to allow AFM imaging when the deposition buffer contained one of the following cations: Co(II), Mg(II), Mn(II), Ni(II), and Zn(II). For all of these cations, DNA attachment occurred preferentially, but not exclusively, along BGR intergrowth lines. When buffers without cation additions and those containing Ca(II), Cu(II), and Fe(II) were used, DNA failed to bind the BGR surfaces strongly enough to allow AFM imaging. The mechanism(s) by which DNA attaches to the BGR surface is (are) not well understood but may involve the incorporation of divalent cations at the tunnel sites of the BGR intergrowths.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la060206z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!