Download full-text PDF

Source
http://dx.doi.org/10.1513/pats.200603-070MSDOI Listing

Publication Analysis

Top Keywords

serpine2 gene
4
gene associated
4
associated chronic
4
chronic obstructive
4
obstructive pulmonary
4
pulmonary disease
4
serpine2
1
associated
1
chronic
1
obstructive
1

Similar Publications

(-)-Epigallocatechin-3-gallate promotes the dermal papilla cell proliferation and migration through the induction of VEGFA.

Biochim Biophys Acta Mol Cell Res

January 2025

College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China. Electronic address:

Dermal papilla cells (DPCs) are crucial for the growth and development of hair follicles (HF). (-)-Epigallocatechin-3-gallate (EGCG) is the primary catechin identified in green tea, which has antioxidant effects and regulates cell activity. This study demonstrates that EGCG could promote the proliferation of DPCs.

View Article and Find Full Text PDF

Epigenetic modification regulates the ligamentum flavum hypertrophy through miR-335-3p/SERPINE2/β-catenin signaling pathway.

Cell Mol Biol Lett

January 2025

Department of Orthopaedics, Peking University Third Hospital, Peking University, No.49 NorthGarden Road, Haidian District, Beijing, 100191, Beijing, China.

Background: Epigenetic modifications have been proved to play important roles in the spinal degenerative diseases. As a type of noncoding RNA, the microRNA (miRNA) is a vital class of regulatory factor in the epigenetic modifications, while the role of miRNAs in the regulation of epigenetic modifications in ligamentum flavum hypertrophy (LFH) has not been fully investigated.

Methods: The miRNA sequencing analysis was used to explore the change of miRNA expression during the fibrosis of ligamentum flavum (LF) cells caused by the TGF-β1 (10 ng/ml).

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on understanding how synovial cells and chondrocytes interact in osteoarthritis (OA), aiming to clarify their roles in OA development.
  • Using single-cell sequencing, researchers analyzed the characteristics of synovial fibroblasts and their interactions with chondrocytes, revealing significant correlations between these cell types in both damaged and healthy cartilage.
  • The findings indicated that some genes in synovial fibroblasts promote chondrocyte health, while others contribute to chondrocyte degradation and inflammation, highlighting a complex balance that affects OA progression.
View Article and Find Full Text PDF

AAV-regulated overexpression promotes hair cell regeneration.

Mol Ther Nucleic Acids

December 2024

State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China.

Inner ear hair cell (HC) damage is irreversible in mammals, but it has been shown that supporting cells (SCs) have the potential to differentiate into HCs. , a serine protease inhibitor, encodes protease nexin 1, and this has been suggested to be a factor that promotes HC regeneration. In this study, we overexpressed in inner ear SCs cultured in two- and three-dimensional systems using the adeno-associated virus-inner ear (AAV-ie) vector, which promoted organoid expansion and HC differentiation.

View Article and Find Full Text PDF

Background: Diabetic nephropathy (DN) is one of the main causes of end-stage renal disease (ESRD), but its mechanism has not been clearly studied. We utilized integrative transcriptome analysis to explore the pathogenesis of DN.

Methods: We conducted an analysis by combining bulk dataset and single-cell transcriptome dataset.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!