Mycobacterium tuberculosis (strain H37Rv) and bacillus Calmette-Guérin (BCG) vaccine inhibit phagosome maturation in macrophages and their effect on processing, and presentation of a secreted Ag85 complex B protein, Ag85B, by mouse macrophages was analyzed. Macrophages were infected with GFP-expressing mycobacterial strains and analyzed for in situ localization of vacuolar proton ATPase (v-ATPase) and cathepsin D (Cat D) using Western blot analysis and immunofluorescence. H37Rv and BCG phagosomes excluded the v-ATPase and maintained neutral pH while the attenuated H37Ra strain acquired v-ATPase and acidified. Mycobacterial phagosomes acquired Cat D, although strains BCG and H37Rv phagosomes contained the inactive 46-kDa form, whereas H37Ra phagosomes had the active 30-kDa form. Infected macrophages were overlaid with a T cell hybridoma specific for an Ag85B epitope complexed with MHC class II. Coincident with active Cat D, H37Ra-infected macrophages presented the epitope to T cells inducing IL-2, whereas H37Rv- and BCG-infected macrophages were less efficient in IL-2 induction. Bafilomycin inhibited the induction of macrophage-induced IL-2 from T cells indicating that v-ATPase was essential for macrophage processing of Ag85B. Furthermore, the small interfering RNA interference of Cat D synthesis resulted in a marked decrease in the levels of macrophage-induced IL-2. Thus, a v-ATPase-dependent phagosomal activation of Cat D was required for the generation of an Ag85B epitope by macrophages. Reduced processing of Ag85B by H37Rv- and BCG-infected macrophages suggests that phagosome maturation arrest interferes with the efficient processing of Ags in macrophages. Because Ag85B is immunodominant, this state may lead to a decreased ability of the wild-type as well as the BCG vaccine to induce protective immunity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.177.5.3250 | DOI Listing |
Semin Immunopathol
January 2025
Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.
View Article and Find Full Text PDFOncogene
January 2025
Department of Gastroenterology, Endocrinology and Metabolism, Center for Tumor and Immune Biology, Philipps University Marburg, Marburg, Germany.
The development of resistance remains one of the biggest challenges in clinical cancer patient care and it comprises all treatment modalities from chemotherapy to targeted or immune therapy. In solid malignancies, drug resistance is the result of adaptive processes occurring in cancer cells or the surrounding tumor microenvironment (TME). Future therapy attempts will therefore benefit from targeting both, tumor and stroma compartments and drug targets which affect both sides will be highly appreciated.
View Article and Find Full Text PDFApoptosis
January 2025
Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China.
Recent studies have suggested that sVEGFR3 is involved in cardiac diseases by regulating lymphangiogenesis; however, results are inconsistent. The aim of this study was to investigate the function and mechanism of sVEGFR3 in myocardial ischemia/reperfusion injury (MI/RI). sVEGFR3 effects were evaluated in vivo in mice subjected to MI/RI, and in vitro using HL-1 cells exposed to oxygen-glucose deprivation/reperfusion.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.
View Article and Find Full Text PDFCell Death Dis
January 2025
NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, 110004, China.
Metabolic rewiring underlies effective macrophages defense to respond disease microenvironment. However, the underlying mechanisms driving metabolic rewiring to enhance macrophage effector functions remain unclear. Here, we demonstrated that the metabolic reprogramming in inflammatory macrophages depended on the acetylation of CLYBL, a citramalyl-CoA lyase, at lysine 154 (K154), and blocking CLYBL-K154 acetylation restricted the release of pro-inflammatory factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!