Nasal application of native cholera toxin (nCT) as a mucosal adjuvant has potential toxicity for the CNS through binding to GM1 gangliosides in the olfactory nerves. Although mutants of cholera toxin (mCTs) have been developed that show mucosal adjuvant activity without toxicity, it still remains unclear whether these mCTs will induce CNS damage. To help overcome these concerns, in this study we created new double mutant CTs (dmCTs) that have two amino acid substitutions in the ADP-ribosyltransferase active center (E112K) and COOH-terminal KDEL (E112K/KDEV or E112K/KDGL). Confocal microscopic analysis showed that intracellular localization of dmCTs differed from that of mCTs and nCTs in intestinal epithelial T84 cells. Furthermore, both dmCTs exhibited very low toxicity in the Y1 cell assay and mouse ileal loop tests. When mucosal adjuvanticity was examined, both dmCTs induced enhanced OVA-specific immune responses in both mucosal and systemic lymphoid tissues. Interestingly, although both dmCT E112K/KDEV and dmCT E112K/KDGL showed high Th2-type and significant Th1-type cytokine responses by OVA-specific CD4+ T cells, dmCT E112K/KDEV exhibited significantly lower Th1-type cytokine responses than did nCT and dmCT E112K/KDGL. These results show that newly developed dmCTs retain strong biological adjuvant activity without CNS toxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469177PMC
http://dx.doi.org/10.4049/jimmunol.177.5.3045DOI Listing

Publication Analysis

Top Keywords

cholera toxin
12
double mutant
8
mucosal adjuvant
8
adjuvant activity
8
dmct e112k/kdev
8
dmct e112k/kdgl
8
th1-type cytokine
8
cytokine responses
8
dmcts
5
second generation
4

Similar Publications

Objectives: The objective of this study is to investigate lipopolysaccharid-binding protein (LBP), zonulin and calprotectin as markers of bacterial translocation, disturbed gut barrier and intestinal inflammation in patients with radiographic axial spondyloarthritis (r-axSpA) during tumour necrosis factor inhibitor (TNFi) therapy and to analyze the association between disease activity, response to treatment and biomarker levels.

Methods: Patients with active r-axSpA of the German Spondyloarthritis Inception Cohort starting TNFi were compared with controls with chronic back pain. Serum levels of LBP, zonulin and calprotectin were measured at baseline and after 1 year of TNFi therapy.

View Article and Find Full Text PDF

Rotaviruses, non-enveloped viruses with a double-stranded RNA genome, are the leading etiological pathogen of acute gastroenteritis in young children and animals. The P[11] genotype of rotaviruses exhibits a tropism for neonates. In the present study, a binding assay using synthetic oligosaccharides demonstrated that the VP8* protein of P[11] porcine rotavirus (PRV) strain 4555 binds to lacto-N-neotetraose (LNnT) with the sequence Galβ1,4-GlcNAcβ1,3-Galβ1,4-Glc, one of the core parts of histo-blood group antigen (HBGA) and milk glycans.

View Article and Find Full Text PDF

Developing intranasal vaccines against pandemics and devastating airborne infectious diseases is imperative. The superiority of intranasal vaccines over injectable systemic vaccines is evident, but developing effective intranasal vaccines presents significant challenges. Fusing a protein antigen with the catalytic domain of cholera toxin (CTA1) and the two-domain D of staphylococcal protein A (DD) has significant potential for intranasal vaccines.

View Article and Find Full Text PDF

Secretory diarrhea, a major global health concern, particularly among young children, is often characterized by excessive chloride secretion through the cystic fibrosis transmembrane conductance regulator (CFTR) channel. Nornidulin, a fungus-derived natural product from Aspergillus unguis, has previously been shown to inhibit cAMP-induced Cl- secretion in T84 cells (human intestinal cell lines). However, the cellular mechanism of nornidulin in inhibiting cAMP-induced Cl- secretion and its anti-secretory efficacy is still unknown especially in a human colonoid model, a preclinical model recapitulating intestinal physiology in humans.

View Article and Find Full Text PDF

Introduction: Intrapleural injections of cholera toxin B conjugated to saporin (CTB-SAP) result in selective respiratory (, phrenic) motor neuron death and mimics aspects of motor neuron disease [(, amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA)], such as breathing deficits. This rodent model allows us to study the impact motor neuron death has on the output of surviving phrenic motor neurons as well as the compensatory mechanisms that are recruited. Microglial density in the phrenic motor nucleus as well as cervical gene expression of markers associated with inflammation (.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!