Ethylene initiates the ripening and senescence of climacteric fruit, whereas polyamines have been considered as senescence inhibitors. Ethylene and polyamine biosynthetic pathways share S-adenosylmethionine as a common intermediate. The effects of 1-methylcyclopropene (1-MCP), an inhibitor of ethylene perception, on ethylene and polyamine metabolism and associated gene expression was investigated during ripening of the model climacteric fruit, tomato (Solanum lycopersicum L.), to determine whether its effect could be via polyamines as well as through a direct effect on ethylene. 1-MCP delayed ripening for 8 d compared with control fruit, similarly delaying ethylene production and the expression of 1-aminocyclopropane-1-carboxylic acid (ACC)-synthase and some ethylene receptor genes, but not that of ACC oxidase. The expression of ethylene receptor genes returned as ripening was reinitiated. Free putrescine contents remained low while ripening was inhibited by 1-MCP, but increased when the fruit started to ripen; bound putrescine contents were lower. The activity of the putrescine biosynthetic enzyme, arginine decarboxylase, was higher in 1-MCP-treated fruit. Activity of S-adenosylmethionine-decarboxylase peaked at the same time as putrescine levels in control and treated fruit. Gene expression for arginine decarboxylase peaked early in non-treated fruit and coincident with the delayed peak in putrescine in treated fruit. A coincident peak in the gene expression for arginase, S-adenosylmethionine-decarboxylase, and spermidine and spermine synthases was also seen in treated fruit. No effect of treatment on ornithine decarboxylase activity was detected. Polyamines are thus not directly associated with a delay in tomato fruit ripening, but may prolong the fully-ripe stage before the fruit tissues undergo senescence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erl092 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!