Beta-catenin is a transcriptional regulator of several genes involved in survival and proliferation. Although previous studies suggest that beta-catenin may be involved in the process of preconditioning and healing after myocardial infarction (MI), little is known regarding the role of beta-catenin in cardiomyocytes and cardiac fibroblasts. We investigated the role of beta-catenin in cardiomyocytes and cardiac fibroblasts and whether beta-catenin overexpression could reduce MI size. Adenovirus-mediated gene transfer of nonphosphorylatable constitutively active beta-catenin (Ad-catenin) decreased apoptosis in cardiomyocytes and cardiac fibroblasts with increased expression of survivin and Bcl-2. Although Ad-catenin increased the percentage of cells in the S phase with enhanced expression of cyclin D1 and E2 in both cell types, the increase in cell number was only evident in cardiac fibroblasts, whereas hypertrophy and binuclear cells were more prominent in cardiomyocytes. All of these effects of beta-catenin gene transfer were blocked by inhibition of its nuclear translocation. Furthermore, Ad-catenin enhanced the expression of vascular endothelial growth factor in both cells and induced differentiation of cardiac fibroblasts into myofibroblasts. In a rat MI model, injection of Ad-catenin into the infarct border zone resulted in a significantly decreased MI size with anti-apoptotic effect and cell cycle activation in both cardiomyocytes and myofibroblasts. beta-Catenin may play an important role in the healing process after MI by promoting survival and cell cycle not only in cardiomyocytes but also in cardiac fibroblasts with its differentiation into myofibroblasts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M603916200 | DOI Listing |
Int J Mol Sci
January 2025
Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden.
Particulate matter (PM) is a major component of ambient air pollution. PM exposure is linked to numerous adverse health effects, including chronic lung diseases. Air quality guidelines designed to regulate levels of ambient PM are currently based on the mass concentration of different particle sizes, independent of their origin and chemical composition.
View Article and Find Full Text PDFBiomolecules
January 2025
Heart and Vascular Institute, Pennsylvania State University Hershey Medical Center, Hershey, PA 17033, USA.
Immuno-fibrotic networks and their protein mediators, such as cytokines and chemokines, have increasingly been appreciated for their critical role in cardiac healing and fibrosis during cardiomyopathy. Immune activation, trafficking, and extravasation are tightly regulated to ensure a targeted and effective response against non-self antigens/pathogens while preserving tolerance towards self-antigens and coordinate fibrotic responses for efficient scar formation, a distinction that is severely compromised during chronic diseases. It is clear that immune cells are not only the critical regulators of post-infarct healing and scarring but are also the key players in regulating fibroblast activation during left-ventricular (LV) remodeling.
View Article and Find Full Text PDFDiagnostics (Basel)
January 2025
Cardiology Department, Coimbra Hospital and University Center, 3004-561 Coimbra, Portugal.
Hypertrophic cardiomyopathy (HCM) is a heterogeneous cardiac disease and one of its major challenges is the limited accuracy in stratifying the risk of sudden cardiac death (SCD). Positron emission tomography (PET), through the evaluation of myocardial blood flow (MBF) and metabolism using fluorodeoxyglucose (FDG) uptake, can reveal microvascular dysfunction, ischemia, and increased metabolic demands in the hypertrophied myocardium. These abnormalities are linked to several factors influencing disease progression, including arrhythmia development, ventricular dilation, and myocardial fibrosis.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
Lactate produced during ischemia-reperfusion injury is known to promote lactylation of proteins, which play controversial roles. By analyzing the lactylomes and proteomes of mouse myocardium during ischemia-reperfusion injury using mass spectrometry, we show that both Serpina3k protein expression and its lactylation at lysine 351 are increased upon reperfusion. Both Serpina3k and its human homolog, SERPINA3, are abundantly expressed in cardiac fibroblasts, but not in cardiomyocytes.
View Article and Find Full Text PDFChin J Nat Med
January 2025
Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China. Electronic address:
Astragali Radix (AR) and Notoginseng Radix et Rhizoma (NR) are frequently employed in cardiovascular disease treatment. However, the efficacy of the AR-NR medicine pair (AN) in improving cardiac remodeling and its underlying mechanism remains unclear. This study aimed to evaluate AN's cardioprotective effect and potential mechanism on cardiac remodeling using transverse aortic constriction (TAC) in mice and angiotensin II (Ang II)-induced neonatal rat cardiomyocytes (NRCMs) and fibroblasts in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!