The control of histone lysine methylation in epigenetic regulation.

Biochimie

Institut de Recherche Interdisciplinaire, CNRS FRE 2963, IRI @ Institut de Biologie de Lille, 1, rue du Pr. Calmette, F-59021 Lille Cedex, France.

Published: January 2007

Histone lysine methylation plays a fundamental role in chromatin organization and function. This epigenetic mark is involved in many biological processes such as heterochromatin formation, chromosome X inactivation, genomic imprinting and transcriptional regulation. Here, we review recent advances in how histone lysine methylation participates in these biological events, and the enzymes that control histone lysine methylation and demethylation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2006.07.009DOI Listing

Publication Analysis

Top Keywords

histone lysine
16
lysine methylation
16
control histone
8
lysine
4
methylation
4
methylation epigenetic
4
epigenetic regulation
4
regulation histone
4
methylation plays
4
plays fundamental
4

Similar Publications

Avenanthramide A potentiates Bim-mediated antineoplastic properties of 5-fluorouracil targeting KDM4C//GSK-3 negative feedback loop in colorectal cancer.

Acta Pharm Sin B

December 2024

Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China.

Chemoresistance to 5-fluorouracil (5-FU) is a significant challenge in treating colorectal cancer (CRC). Novel combined regimens to thwart chemoresistance are therefore urgently needed. Herein, we demonstrated that the combination of Avenanthramide A (AVN A) and 5-FU has significant therapeutic advantages against CRC.

View Article and Find Full Text PDF

Tetramethylammonium (TMA) is a ubiquitous cationic motif in biochemistry, found in the charged choline headgroup of membrane phospholipids and in tri-methylated lysine residues, which modulates histone-DNA interactions and impacts epigenetic mechanisms. TMA interactions with anionic species, particularly carboxylate groups of amino acid residues and extracellular sugars, are of substantial biological relevance, as these interactions mediate a wide range of cellular processes. This study investigates the molecular interactions between TMA and acetate, representing carboxylate-containing groups, using neutron scattering experiments complemented by force fields and molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Histone demethylases in autophagy and inflammation.

Cell Commun Signal

January 2025

School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China.

Autophagy dysfunction is associated with changes in autophagy-related genes. Various factors are connected to autophagy, and the mechanism regulating autophagy is highly complicated. Epigenetic changes, such as aberrant expression of histone demethylase, are actively associated not only with oncogenesis but also with inflammatory responses.

View Article and Find Full Text PDF

Gastric cancer (GC) ranks 3rd in incidence rate and mortality rate among malignant tumors in China, and the age-standardized five-year net survival rate of patients with GC was 35.9% from 2010 to 2014. The tumor immune microenvironment (TIME), which includes T cells, macrophages, natural killer (NK) cells and B cells, significantly affects tumor progression, immunosuppression and drug resistance in patients with GC.

View Article and Find Full Text PDF

Exploring the various functions of PHD finger protein 20: beyond the unknown.

Toxicol Res

January 2025

Department of Pharmacology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea.

Over the last decade, the functions of PHD finger protein 20 (PHF20) in several signaling processes have been studied, including those of protein kinase B (PKB)-mediated phosphorylation, p53 regulation, muscle differentiation, and histone modification including histone H3 lysine 4 (H3K4) methylation. One PHF20 human mutation lacks the first nonspecific lethal complex of the component that binds to H3K4me2 to facilitate cancer cell survival. In carcinoma cells, PHF20 expression is regulated by PKB; PHF20 becomes phosphorylated when DNA is damaged, thus inhibiting the p53 activity that maintains cancer cell survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!