Synthesis and assembly of Escherichia coli heat-labile enterotoxin B subunit in transgenic lettuce (Lactuca sativa).

Protein Expr Purif

Division of Biological Sciences and Research Center for Bioactive Materials, Chonbuk National University, Jeonju 561-756, Republic of Korea.

Published: January 2007

Escherichia coli heat-labile enterotoxin B subunit (LTB) strongly induces immune responses and can be used as an adjuvant for co-administered antigens. Synthetic LTB (sLTB) based on optimal codon usage by plants was introduced into lettuce cells (Lactuca sativa) by Agrobacterium tumefaciens-mediated transformation methods. The sLTB gene was detected in the genomic DNA of transgenic lettuce leaf cells by PCR DNA amplification. Synthesis and assembly of the sLTB protein into oligomeric structures of pentameric size was observed in transgenic plant extracts using Western blot analysis. The binding of sLTB pentamers to intestinal epithelial cell membrane glycolipid receptors was confirmed by G(M1)-ganglioside enzyme-linked immunosorbent assay (G(M1)-ELISA). Based on the results of ELISA, sLTB protein comprised approximately 1.0-2.0% of total soluble protein in transgenic lettuce leaf tissues. The synthesis and assembly of sLTB monomers into biologically active oligomers in transgenic lettuce leaf tissues demonstrates the feasibility of the use of edible plant-based vaccines consumed in the form of raw plant materials to induce mucosal immunity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pep.2006.05.024DOI Listing

Publication Analysis

Top Keywords

transgenic lettuce
16
synthesis assembly
12
lettuce leaf
12
escherichia coli
8
coli heat-labile
8
heat-labile enterotoxin
8
enterotoxin subunit
8
lactuca sativa
8
assembly sltb
8
sltb protein
8

Similar Publications

Etiolation promotes protoplast transfection and genome editing efficiency.

Physiol Plant

November 2024

Department of Horticulture, College of Agricultural Life Science, Jeonbuk National University, Jeonju, Republic of Korea.

In plants, DNA-free genome editing using preassembled clustered regularly interspaced short palindromic repeats (CRISPR)-ribonucleoprotein (RNP) has the advantage of avoiding transgene integration and limiting off-target effects. The efficiency of this gene editing strategy can vary, so optimization of protoplast transfection conditions is necessary to achieve maximum yield. In this study, we examined the effects of etiolation, or increased exposure to darkness during cultivation, on the transfection efficiency of protoplasts from lettuce and Chinese cabbage.

View Article and Find Full Text PDF

Microscopic imaging for studying plant-pathogen interactions is limited by its reliance on invasive histological techniques, like clearing and staining, or, for in vivo imaging, on complicated generation of transgenic pathogens. We present real-time 3D in vivo visualization of pathogen dynamics with label-free optical coherence tomography. Based on intrinsic signal fluctuations as tissue contrast we image filamentous pathogens and a nematode in vivo in 3D in plant tissue.

View Article and Find Full Text PDF

Cadmium (Cd) is a harmful heavy metal that is highly toxic to plants and animals. Expansins are cell wall proteins inducing cell wall loosening and participate in all plant growth and development processes which are associated with cell wall modifications. We investigated lettuce's expansin gene LsEXPA6 and found that LsEXPA6 overexpression Arabidopsis lines were much more resistant to cadmium stress.

View Article and Find Full Text PDF

Lettuce is one of the most widely consumed vegetables in the world, commonly eaten fresh in salads, sandwiches, wraps, and as a garnish in various dishes. Consequently, it is a very promising vehicle to deliver vitamins, such as folate (vitamin B9), to a specific population using biofortified varieties generated by conventional or molecular breeding. A new genetically modified lettuce was generated with increased folate content.

View Article and Find Full Text PDF

The excessive consumption of sugar-containing foods contributes to the development of a number of diseases, including obesity, diabetes mellitus, etc. As a substitute for sugar, people with diabetes mellitus and obesity most often use sweeteners. Sweet proteins, in particular brazzein, are an alternative to synthetic sweeteners that have natural origin, are broken down in the intestines along with food proteins, and do not affect blood sugar and insulin levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!