AI Article Synopsis

  • A new functionalized pyrrole monomer called 3-pyrrolylacrylic acid (PAA) was synthesized and used to create a copolymer with pyrrole, named poly(Py-co-PAA).
  • The copolymer was studied using techniques like FT-IR, UV-vis spectroscopy, and cyclic voltammetry, leading to the development of a label-free DNA sensor.
  • The DNA sensor showed a significant increase in charge-transfer resistance when interacting with complementary DNA, indicating that the sensor's response could be quantitatively assessed based on the concentration of DNA targets.

Article Abstract

A new functionalized pyrrole monomer, 3-pyrrolylacrylic acid (PAA) was synthesized. It was used to prepare a copolymer with pyrrole, poly(Py-co-PAA), which was investigated by reflective FT-IR, UV-vis spectroscopy and cyclic voltammetry. A label-free DNA sensor was prepared based on a poly(Py-co-PAA) film. Hybridization with complementary and non-complementary DNA targets was studied by electrochemical impedance spectroscopy. Results show a significant increase in the charge-transfer resistance upon addition of complementary target. The impedance spectra were analyzed by using a modified Randles and Ershler equivalent circuit model. The change in charge-transfer resistance that was used as an index of sensor response was found to be linear with logarithmic target concentration in the range of 2 x 10(-9) to 2 x 10(-7)M. The detection limit was 0.98 nM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2006.07.010DOI Listing

Publication Analysis

Top Keywords

charge-transfer resistance
8
label-free detection
4
detection dna
4
dna hybridization
4
hybridization based
4
based novel
4
novel functionalized
4
functionalized conducting
4
conducting polymer
4
polymer functionalized
4

Similar Publications

In the current investigation, the efficiency inhibition of two newly synthesized bi-pyrazole derivatives, namely 2,3-bis[(bis((1 H-pyrazol-1-yl) methyl) amino)] pyridine (Tetra-Pz-Ortho) and 1,4-bis[(bis((1 H-pyrazol-1-yl) methyl) amino)] benzene (Tetra-Pz-Para) for corrosion of carbon steel (C&S) in 1 M HCl medium was evaluated. A Comparative study of inhibitor effect of Tetra-Pz-Ortho and Tetra-Pz-Para was conducted first using weight loss method and EIS (Electrochemical Impedance Spectroscopy) and PDP (Potentiodynamic Polarisation) techniques. Tetra-Pz-Ortho and Tetra-Pz-Para had a maximum inhibition efficacy of 97.

View Article and Find Full Text PDF

Commercial hard carbon (HC) anode suffers from unexpected interphase chemistry rooted in the parasitic reactions between surface oxygen-functional groups and ester-based electrolytes. Herein, an innovative strategy is proposed to regulate interphase chemistry by tailoring targeted functional groups on the HC surface, where highly active undesirable oxygen-functional groups are skillfully converted into a Si-O-Si molecular layer favorable for anchoring anions. Then, an inorganic/organic hybrid solid electrolyte interphase with low interfacial charge transfer resistance and enhanced cycling durability is constructed successfully.

View Article and Find Full Text PDF

Hydrogen production via water-splitting or ammonia electrolysis using transition metal-based electrodes is one of the most cost-effective approaches. Herein, ca. 1-4% of Pt atoms are stuffed into a wolframite-type NiWO lattice to improve the electrocatalytic efficiency.

View Article and Find Full Text PDF

Cobalt regulation biocathode with sulfate-reducing bacteria for enhancing the reduction of antimony and the removal of sulfate in a microbial electrolysis cell simultaneously.

Environ Res

January 2025

School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR. China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR. China. Electronic address:

Antimony (Sb) contamination in water resources poses a critical environmental and health challenge globally. Sulfate reducing bacteria (SRB) are employed to reduce SO to S for removing Sb in a microbial electrolysis cell (MEC). Yet, the reduction efficiency of reducing SO and Sb(Ⅴ) through SRB remains relatively low, and the underlying mechanism remains elusive.

View Article and Find Full Text PDF

Electrical activation of periodate by nano-zero-valent cobalt/nitrogen-doped carbon for sulfisoxazole degradation: Insights into rapid electron transfer mechanisms.

J Colloid Interface Sci

January 2025

Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Periodate (PI) activation via three-dimensional electrochemical (E) is a promising approach for degrading sulfisoxazole (SIZ), while the scarcity of active sites significantly limits the efficient electron-transfer rate. Herein, we synthesized multiple strongly active zero-valent cobalt (Co) nanoparticles encapsulated in nitrogen-doped carbon (NC) shells through Co-potassium chloride (KCl) doping pyrolysis of Zeolitic Imidazolate Framework-8 (ZIF-8) to induce the rapid electron transfer pathways (ETP). Specifically, molten KCl doping provides confined structures for Co with a diameter of 12.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!