Effect of controlled delivery of neurotrophin-3 from fibrin on spinal cord injury in a long term model.

J Control Release

Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130, USA.

Published: November 2006

The goal of this work was to assess the effect of the controlled delivery of neurotrophin-3 (NT-3) from an affinity-based delivery system in fibrin scaffolds on regeneration following spinal cord injury (SCI). A heparin-based delivery system (HBDS) was used to immobilize NT-3 within fibrin scaffolds via non-covalent interactions. The fibrin scaffolds were implanted in lesions immediately after injury in an adult rat model of SCI (complete ablation of a 2 mm segment of the cord at T9). Delivery of NT-3 was controlled by an affinity-based delivery system that limits drug loss by diffusion and releases the drug via cell-mediated processes. Twelve weeks after injury and treatment, animals treated with fibrin scaffolds and NT-3, with or without the delivery system, did not show functional improvement over saline controls. Substantial cavitation at edges of the lesion was present, and while neuronal fibers were present inside the lesion, traced corticospinal and dorsal sensory tracts did not regenerate into the lesion. Therefore, while previous studies indicate that the controlled delivery of NT-3 from fibrin scaffolds may increase the short term regenerative response, the continued degeneration of the cord, indicative of the severity of the injury, limits the long term regeneration stimulated by this treatment. Chronic or repeated treatments or a less severe injury model may prove useful in assessing the utility of controlled delivery systems for the treatment of spinal cord injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1855256PMC
http://dx.doi.org/10.1016/j.jconrel.2006.07.005DOI Listing

Publication Analysis

Top Keywords

fibrin scaffolds
20
controlled delivery
16
delivery system
16
spinal cord
12
cord injury
12
delivery neurotrophin-3
8
long term
8
delivery
8
affinity-based delivery
8
nt-3 fibrin
8

Similar Publications

A meniscus injury is a common cartilage disease of the knee joint. Despite the availability of various methods for the treatment of meniscal injuries, the poor regenerative capacity of the meniscus often necessitates resection, leading to the accelerated progression of osteoarthritis. Advances in tissue engineering have introduced meniscal tissue engineering as a potential treatment option.

View Article and Find Full Text PDF

: The barrier properties of the human small intestine play a crucial role in regulating digestion, nutrient absorption and drug metabolism. Current in vitro organotypic models consist only of an epithelium, which does not take into account the possible role of stromal cells such as fibroblasts or the extracellular matrix (ECM) which could contribute to epithelial barrier properties. Therefore, the aim of this study was to determine whether these stromal cells or ECM were beneficial or detrimental to barrier function when incorporated into an organotypic human small intestine model.

View Article and Find Full Text PDF

Aims: Human periodontal ligament stem cells (hPDLSCs) exhibit an enormous potential to regenerate periodontal tissue. However, their translatability to the clinical setting is constrained by technical difficulties in standardizing culture conditions. The aim was to assess complex culture conditions using a proteomic-based protocol to standardize multi-layer hPDLSC cultivation methodology.

View Article and Find Full Text PDF

Traumatic spinal cord injury (TSCI) is a serious medical issue where there is a loss of sensorimotor function. Current interventions continue to lack the ability to successfully enhance these conditions, therefore, it is crucial to consider alternative effective strategies. Currently, we investigated the effects of fibrin scaffold encapsulated with epigallocatechin gallate (EGCG) microspheres in the recovery of SCI in rats.

View Article and Find Full Text PDF

Incorporating autologous patient-derived products has become imperative to enhance the continually improving outcomes in bone tissue engineering. With this objective in mind, this study aimed to evaluate the osteogenic potential of 3D-printed allograft-alginate-gelatin scaffolds coated with stromal vascular fraction (SVF) and platelet-rich fibrin (PRF). The primary goal was to develop a tissue-engineered construct capable of facilitating efficient bone regeneration through the utilization of biomaterials with advantageous properties and patient-derived products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!