Duration selectivity appears to be a fundamental neural encoding mechanism found throughout the animal kingdom. Previous studies reported that band-pass duration-tuned neurons typically show offset responses and occupy a small portion of auditory neurons in non-echolocation mammals relative to echolocation bats. Therefore, duration tuning is generally weaker in non-echolocation mammals. In the present study, duration tuning was analyzed for 207 neurons recorded in the inferior colliculus (IC) of guinea pigs. Duration tuning was found to be stronger in the onset component of the responses from sustained, on-off and pause neurons than had been reported previously, when a short analysis window was applied. The need for an appropriate time window for duration tuning analysis was also supported by the fact that the on and off responses from an on-off neuron may show different duration tuning features. Therefore, duration tuning appears to be a transient neural coding process in the IC of guinea pigs. Duration tuning for these types of neurons may have been blurred by the use of a relatively unselective, long window.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2006.07.046 | DOI Listing |
Mol Biol Cell
January 2025
Department of Molecular, Cellular, and Developmental Biology; University of Michigan; Ann Arbor, Michigan, 48109; USA.
To preserve barrier function, cell-cell junctions must dynamically remodel during cell shape changes. We have previously described a rapid tight junction repair pathway characterized by local, transient activation of RhoA, termed "Rho flares", which repair leaks in tight junctions via promoting local actomyosin-mediated junction remodeling. In this pathway, junction elongation is a mechanical trigger that initiates RhoA activation through an influx of intracellular calcium and recruitment of p115RhoGEF.
View Article and Find Full Text PDFbioRxiv
January 2025
Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, Oregon, 97239.
Exposure to loud and/or prolonged noise damages cochlear hair cells and triggers downstream changes in synaptic and electrical activity in multiple brain regions, resulting in hearing loss and altered speech comprehension. It remains unclear however whether or not noise exposure also compromises the cochlear efferent system, a feedback pathway in the brain that fine-tunes hearing sensitivity in the cochlea. We examined the effects of noise-induced hearing loss on the spontaneous action potential (AP) firing pattern in mouse lateral olivocochlear (LOC) neurons.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea.
Advances in the semiconductor industry have been limited owing to the constraints imposed by silicon-based CMOS technology; hence, innovative device design approaches are necessary. This study focuses on "more than Moore" approaches, specifically in neuromorphic computing. Although MoS devices have attracted attention as neuromorphic computing candidates, their performances have been limited due to environment-induced perturbations to carrier dynamics and the formation of defect states.
View Article and Find Full Text PDFCortex
December 2024
Department of Psychological Sciences, University of Liverpool, Liverpool, UK.
The human visual system is tuned to symmetry, and the neural response to visual symmetry has been well studied. One line of research measures an Event Related Potential (ERP) component called the Sustained Posterior Negativity (SPN). Amplitude is more negative at posterior electrodes when participants see symmetrical patterns compared to asymmetrical patterns.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Otorhinolaryngology, Head and Neck Surgery, Bhaarath Medical College, Chennai 600073, Tamil Nadu, India.
The misuse of personalized listening devices (PLDs) resulting in noise-induced hearing loss (NIHL) has become a public health concern, especially among youths, including medical students. The occupational use of PLDs that produce high-intensity sounds amplifies the danger of cochlear deterioration and high-frequency NIHL especially when used in noisy environments. This study aims to evaluate the incidence and trends of NIHL among medical students using PLDs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!