A new member of the aldo-keto reductase family from the plant pathogen Xylella fastidiosa.

Arch Biochem Biophys

Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, C.P. 6010, 13083-875 Campinas, SP, Brazil.

Published: September 2006

AI Article Synopsis

Article Abstract

The Xylella fastidiosa genome program generated a large number of gene sequences that belong to pathogenicity, virulence and adaptation categories from this important plant pathogen. One of these genes (XF1729) encodes a protein similar to a superfamily of aldo-keto reductase together with a number of structurally and functionally related NADPH-dependent oxidoreductases. In this work, the similar sequence XF1729 from X. fastidiosa was cloned onto the pET32Xa/LIC vector in order to overexpress a recombinant His-tag fusion protein in Escherichia coli BL21(DE3). The expressed protein in the soluble fraction was purified by immobilized metal affinity chromatography (agarose-IDA-Ni resin). Secondary structure contents were verified by circular dichroism spectroscopy. Small angle X-ray scattering (SAXS) measurements furnish general structural parameters and provide a strong indication that the protein has a monomeric form in solution. Also, ab initio calculations show that the protein has some similarities with a previously crystallized aldo-keto reductase protein. The recombinant XF1729 purified to homogeneity catalyzed the reduction of dl-glyceraldehyde (K(cat) 2.26s(-1), Km 8.20+/-0.98 mM) and 2-nitrobenzaldehyde (K(cat) 11.74 s(-1), Km 0.14+/-0.04 mM) in the presence of NADPH. The amino acid sequence deduced from XF1729 showed the highest identity (40% or higher) with several functional unknown proteins. Among the identified AKRs, we found approximately 29% of identity with YakC (AKR13), 30 and 28% with AKR11A and AKR11B, respectively. The results establish XF1729 as the new member of AKR family, AKR13B1. Finally, the first characterization by gel filtration chromatography assays indicates that the protein has an elongated shape, which generates an apparent higher molecular weight. The study of this protein is an effort to fight X. fastidiosa, which causes tremendous losses in many economically important plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2006.07.005DOI Listing

Publication Analysis

Top Keywords

aldo-keto reductase
12
plant pathogen
8
xylella fastidiosa
8
protein
8
xf1729
5
member aldo-keto
4
reductase family
4
family plant
4
pathogen xylella
4
fastidiosa
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!