This review of 61 references delineates contemporary computation quantitative structure activity relationship (QSAR) approaches that have been used to elucidate the molecular features that influence the binding and metabolism of a compound by the major phase 1 and phase 2 metabolising enzymes; Cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT), respectively. Contemporary studies are applying 2D and 3D QSAR, pharmacophore approaches and nonlinear techniques (for example: recursive partitioning, neural networks and support vector machines) to model drug metabolism. Furthermore, this review highlights some of the challenges and opportunities for future research; the need to develop 'global' models for CYP and UGT metabolism and to extend QSAR for other important metabolising enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/156802606778108960 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!