Toxicology historically has been directed at studying the mechanisms of adverse effects of isolated compounds on living organisms at high levels of exposure, forming the basis for risk and safety assessment. One way to refocus and mobilize new research funds would be to better match the priorities in regulatory issues and direct the research within the field of toxicology more to low-dose toxicology and risk--benefit analysis. Low-dose toxicology can only be developed when taking into account mechanistic insight and will require risk-benefit analysis and a definition of interactions between compounds at realistic doses of exposure, especially in the case of dietary constituents. This is because the biological effects at low levels of exposure not only may be adverse but also can be beneficial depending on the target organ, the actual end point studied, the receptors activated, and/or the gene expression, protein, and metabolite patterns affected. Toxicologists have the tools and knowledge to study mechanisms of biological effects of chemicals on living organisms, and they should redirect their focus from looking only at adverse effects at high levels of exposure to characterizing the complex biological effects, both adverse and beneficial, at low levels of exposure. This may even result in the notion that beneficial effects can be the result of reaction pathways that are generally considered adverse and vice versa. Low-dose toxicology not only will provide a significant research challenge for the years ahead but also should contribute to better methods for low-dose risk assessment for complex mixtures of chemical compounds. This refocusing from high- to low-dose effects turns the field from a science focusing on adverse effects into a science studying the biological effects of chemical compounds on living organisms, taking into account the realization that the ultimate biological effect of a chemical may vary with its dose, the end point or target organ considered, and/or the combined exposure with other chemicals. By defining the effects of chemicals on living organisms at physiologically relevant exposure levels, toxicologists may contribute not only to better risk and safety assessment but also to preventive medicine, generating knowledge on possible adverse and also beneficial effects of chemicals. In addition, it will result in an approach for food safety assessment more in line with that for drug safety assessment taking the risk-benefit balance into consideration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/tx0601051 | DOI Listing |
Commun Med (Lond)
January 2025
Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA.
Background: Multiple Sulfatase Deficiency (MSD) is a rare inherited lysosomal storage disorder characterized by loss of function mutations in the SUMF1 gene that manifests as a severe pediatric neurological disease. There are no available targeted therapies for MSD.
Methods: We engineered a viral vector (AAV9/SUMF1) to deliver working copies of the SUMF1 gene and tested the vector in Sumf1 knock out mice that generally display a median lifespan of 10 days.
Sci Rep
January 2025
Center for Advanced Laser Technologies (CETAL), National Institute for Lasers, Plasma and Radiation Physics, Magurele-Ilfov, 077125, Romania.
Nature offers unique examples that help humans produce artificial systems which mimic specific functions of living organisms and provide solutions to complex technical problems of the modern world. For example, the development of 3D micro-nanostructures that mimic nocturnal insect eyes (optimized for night vision), emerges as promising technology for detection in IR spectral region. Here, we report a proof of principle concerning the design and laser 3D printing of all ultrastructural details of nocturnal moth Grapholita Funebrana eyes, for potential use as microlens arrays for IR detection systems.
View Article and Find Full Text PDFAm J Transplant
February 2025
Division of Immunology and Organ Transplantation, McGovern Medical School at the University of Texas Health Sciences Center, Houston, Texas, USA.
Environ Pollut
January 2025
Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410013, PR China. Electronic address:
Microplastics (MPs) are becoming a significant environmental and public health concern because they are present in freshwater and marine environments and are ingested by living organisms. Cholestatic liver disease (CLD) is closely related to intestinal homeostasis, but there are no data investigating the effects of MPs on CLD. In this study, we used Mdr2 mice (a model of CLD) to investigate the effects of polystyrene microplastics (PS-MPs, 0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Southeast University, Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Institute of Advanced Materials and School of Chemistry and Chemical Engineering, 211189, Nanjing, CHINA.
In nature, organisms adapt to environmental changes through training to learn new abilities, offering valuable insights for developing intelligent materials. However, replicating this adaptive learning in synthetic materials presents a significant challenge. This study introduces a feasible approach to train liquid crystal elastomers (LCEs) by integrating a mechanophore tetraarylsuccinonitrile (TASN) into their main chain, addressing the challenge of enabling synthetic materials to exchange substances with their environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!