Double-stranded DNA binding, an unusual property of DNA polymerase epsilon, promotes epigenetic silencing in Saccharomyces cerevisiae.

J Biol Chem

Department of Molecular Biology, Graduate School of Biological Sciences and Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.

Published: October 2006

We have previously shown that DNA polymerase epsilon (Pol epsilon)of Saccharomyces cerevisiae binds stably to double-stranded DNA (dsDNA), a property not generally associated with DNA polymerases. Here, by reconstituting Pol epsilon activity from Pol2p-Dpb2p and Dpb3p-Dpb4p, its two component subassemblies, we report that Dpb3p-Dpb4p, a heterodimer of histone-fold motif-containing subunits, is responsible for the dsDNA binding. Substitution of specific lysine residues in Dpb3p, highlighted by homology modeling of Dpb3p-Dpb4p based on the structure of the histone H2A-H2B dimer, indicated that they play roles in binding of dsDNA by Dpb3p-Dpb4p, in a manner similar to the histone-DNA interaction. The lysine-substituted dpb3 mutants also displayed reduced telomeric silencing, whose degree paralleled that of the dsDNA-binding activity of Pol epsilon in the corresponding dpb3 mutants. Furthermore, additional amino acid substitutions to lysines in Dpb4p, to compensate for the loss of positive charges in the Dpb3p mutants, resulted in simultaneous restoration of dsDNA-binding activity by Pol epsilon and telomeric silencing. We conclude that the dsDNA-binding property of Pol epsilon is required for epigenetic silencing at telomeres.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M606637200DOI Listing

Publication Analysis

Top Keywords

pol epsilon
16
double-stranded dna
8
dna polymerase
8
polymerase epsilon
8
epigenetic silencing
8
saccharomyces cerevisiae
8
dpb3 mutants
8
telomeric silencing
8
dsdna-binding activity
8
activity pol
8

Similar Publications

A tale of two strands: Decoding chromatin replication through strand-specific sequencing.

Mol Cell

January 2025

Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address:

DNA replication, a fundamental process in all living organisms, proceeds with continuous synthesis of the leading strand by DNA polymerase ε (Pol ε) and discontinuous synthesis of the lagging strand by polymerase δ (Pol δ). This inherent asymmetry at each replication fork necessitates the development of methods to distinguish between these two nascent strands in vivo. Over the past decade, strand-specific sequencing strategies, such as enrichment and sequencing of protein-associated nascent DNA (eSPAN) and Okazaki fragment sequencing (OK-seq), have become essential tools for studying chromatin replication in eukaryotic cells.

View Article and Find Full Text PDF

Long AT repeat tracts form non-B DNA structures that stall DNA replication and cause chromosomal breakage. AT repeats are abundant in human common fragile sites (CFSs), genomic regions that undergo breakage under replication stress. Using an in vivo yeast model system containing AT-rich repetitive elements from human CFS FRA16D, we find that DNA polymerase zeta (Pol ζ) is required to prevent breakage and subsequent deletions at hairpin and cruciform forming (AT/TA)n sequences, with little to no role at an (A/T)28 repeat or a control non-structure forming sequence.

View Article and Find Full Text PDF

Acetaldehyde is the primary metabolite of alcohol and is present in many environmental sources including tobacco smoke. Acetaldehyde is genotoxic, whereby it can form DNA adducts and lead to mutagenesis. Individuals with defects in acetaldehyde clearance pathways have increased susceptibility to alcohol-associated cancers.

View Article and Find Full Text PDF

TTF2 promotes replisome eviction from stalled forks in mitosis.

bioRxiv

November 2024

Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.

When cells enter mitosis with under-replicated DNA, sister chromosome segregation is compromised, which can lead to massive genome instability. The replisome-associated E3 ubiquitin ligase TRAIP mitigates this threat by ubiquitylating the CMG helicase in mitosis, leading to disassembly of stalled replisomes, fork cleavage, and restoration of chromosome structure by alternative end-joining. Here, we show that replisome disassembly requires TRAIP phosphorylation by the mitotic Cyclin B-CDK1 kinase, as well as TTF2, a SWI/SNF ATPase previously implicated in the eviction of RNA polymerase from mitotic chromosomes.

View Article and Find Full Text PDF

Molecular mechanism of parental H3/H4 recycling at a replication fork.

Nat Commun

November 2024

Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.

Article Synopsis
  • Histone recycling from parental DNA to new strands is crucial for passing down epigenetic information during chromatin replication.
  • An experiment showed that disrupting the interaction between Mcm2 and a histone complex affects recycling, but more details about the specific mechanisms involved are still unknown.
  • Simulations of yeast DNA replication revealed that histones can be recycled through different pathways and that the binding of RPA influences how much is recycled to each strand, while DNA bending by Pol ε affects where the histones end up.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!