More than structural cells, fibroblasts create and orchestrate the tumor microenvironment.

Immunol Invest

Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, and Lymphoma Biology Program, James P. Wilmot Cancer Center, Rochester, New York 14642, USA.

Published: October 2006

The tumor microenvironment comprises many cell types including infiltrating immune cells such as lymphocytes, endothelial cells and a complex stroma consisting mainly of fibroblasts. Fibroblasts are heterogeneous and consist of Thy-1+ and Thy-1- subsets that define different biosynthetic and differentiation potential. They produce mediators linked to carcinogenesis and metastasis, including Cox-2 and PGE2, both of which are also increased in most cancers. This review will highlight the emerging role of the complex fibroblastic stroma in establishing a microenvironment supporting malignant transformation, tumor growth and attenuation of host anti-tumor immune responses.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08820130600754960DOI Listing

Publication Analysis

Top Keywords

tumor microenvironment
8
structural cells
4
cells fibroblasts
4
fibroblasts create
4
create orchestrate
4
orchestrate tumor
4
microenvironment tumor
4
microenvironment comprises
4
comprises cell
4
cell types
4

Similar Publications

Background: Immune cells within tumor tissues play important roles in remodeling the tumor microenvironment, thus affecting tumor progression and the therapeutic response. The current study was designed to identify key markers of plasma cells and explore their role in high-grade serous ovarian cancer (HGSOC).

Methods: We utilized single-cell sequencing data from the Gene Expression Omnibus (GEO) database to identify key immune cell types within HGSOC tissues and to extract related markers via the Seurat package.

View Article and Find Full Text PDF

Background: Sorafenib, an FDA-approved drug for advanced hepatocellular carcinoma (HCC), faces resistance issues, partly due to myeloid-derived suppressor cells (MDSCs) that enhance immunosuppression in the tumor microenvironment (TME).

Methods: Various murine HCC cell lines and MDSCs were used in a series of in vitro and in vivo experiments. These included subcutaneous tumor models, cell viability assays, flow cytometry, immunohistochemistry, and RNA sequencing.

View Article and Find Full Text PDF

Radiofrequency ablation combined with immunotherapy to treat hepatocellular carcinoma: a comprehensive review.

BMC Surg

January 2025

General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.

Background And Aim: Hepatocellular carcinoma (HCC) is a highly immunogenic tumor and the third leading cause of cancer-related deaths worldwide with an increasing incidence. Therefore, the combination of immunotherapy with other approaches, such as anti-angiogenic agents and local area therapy, has become a new strategy for HCC treatment.

Methods: We searched PubMed and Web of Science and extracted publications relating to the radiofrequency ablation (RFA) and immunotherapy.

View Article and Find Full Text PDF

Investigating the role of intratumoral Streptococcus mitis in gastric cancer progression: insights into tumor microenvironment.

J Transl Med

January 2025

Department of Pathogen Biology, Key Laboratory for Pathogen Infection and Control of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, Jiangsu, P.R. China.

Growing evidence implicates that intratumoral microbiota are closely linked to cancer progression; however, research on the role of these microbiota in the development of gastric cancer remains limited. Here, using 16 S rRNA sequencing, tumor tissue proteomics and serum cytokines analysis, we identified enrichment of specific microbial communities within tumors of gastric cancer patients, possibly affecting the tumor microenvironment by immune modulation, metabolic processes, and inflammatory responses. Based on the results of in vivo experiments and intratumoral microbiota analysis, we found that Streptococcus mitis can inhibit gastric cancer progression via suppressing M2 macrophage polarization and infiltration, as well as altering the intratumoral microbial community.

View Article and Find Full Text PDF

Background: Tumor microenvironment (TME), particularly immune cell infiltration, programmed cell death (PCD) and stress, has increasingly become a focal point in colorectal cancer (CRC) treatment. Uncovering the intricate crosstalk between these factors can enhance our understanding of CRC, guide therapeutic strategies, and improve patient prognosis.

Methods: We constructed an immune-related cell death and stress (ICDS) prognostic model utilizing machine learning methodologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!