An important consideration in the development of T cell-based cancer immunotherapy is that effector T cells must efficiently traffic to the tumor microenvironment in order to control malignant progression. T cell trafficking to target tissues is orchestrated by dynamic interactions between circulating lymphocytes and endothelial cells lining blood vessels. It is informative, in this regard, to compare and contrast the molecular mechanisms governing lymphocyte extravasation at distinct vascular sites: (1) high endothelial venules (HEV) of secondary lymphoid organs, which are portals for efficient trafficking of naive and central memory T lymphocytes; (2) non-activated endothelium of normal tissues that mediate relatively low basal levels of trafficking but are rapidly transformed into HEV-like vessels in response to local inflammatory stimuli; and (3) vessels within the intratumoral region and the surrounding peritumoral areas. These vessels can be distinguished by differential expression of hallmark trafficking molecules that function as molecular beacons directing lymphocyte migration across vascular barriers. This article reviews evidence that recruitment of effector T cells to the intratumoral microenvironment is impeded by sub-threshold expression of trafficking molecules on tumor microvessels. Emerging data support the thesis that when considered from the perspective of extravasation, vessels embedded within the intratumoral microenvironment of established tumors do not exhibit stereotypical characteristics of a chronic inflammatory state. A major challenge will be to develop therapeutic approaches to improve trafficking of effector T lymphocytes to tumor sites without skewing the balance in favor of a chronic inflammatory milieu that facilitates tumor maintenance and progression.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08820130600745430DOI Listing

Publication Analysis

Top Keywords

tumor microenvironment
8
effector cells
8
trafficking molecules
8
intratumoral microenvironment
8
chronic inflammatory
8
trafficking
7
tumor
5
vessels
5
hurdles lymphocyte
4
lymphocyte trafficking
4

Similar Publications

Achieving the precise targeting of lentiviral vectors (LVs) to specific cell populations is crucial for effective gene therapy, particularly in cancer treatment where the modulation of the tumor microenvironment can enhance anti-tumor immunity. Programmed cell death protein 1 (PD-1) is overexpressed on activated tumor-infiltrating T lymphocytes, including regulatory T cells that suppress immune responses via FOXP3 expression. We developed PD1-targeted LVs by incorporating the anti-PD1 nanobody nb102c3 into receptor-blinded measles virus H and VSV-G glycoproteins.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with a notably poor response to therapy due to its immunosuppressive tumor microenvironment (TME) and intrinsic drug resistance. The oncolytic virus (OV) represents a promising therapeutic strategy capable of transforming the "cold" immunological profile of PDAC tumors to a "hot" one by reshaping the TME. 4-1BB (CD137), a crucial member of the tumor necrosis factor receptor superfamily, plays a significant role in T-cell activation and function.

View Article and Find Full Text PDF

Building of CuO@Cu-TA@DSF/DHA Nanoparticle Targets MAPK Pathway to Achieve Synergetic Chemotherapy and Chemodynamic for Pancreatic Cancer Cells.

Pharmaceutics

December 2024

Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China.

With the increase of reactive oxygen species (ROS) production, cancer cells can avoid cell death and damage by up-regulating antioxidant programs. Therefore, it will be more effective to induce cell death by using targeted strategies to further improve ROS levels and drugs that inhibit antioxidant programs. Considering that dihydroartemisinin (DHA) can cause oxidative damage to protein, DNA, or lipids by producing excessive ROS, while, disulfiram (DSF) can inhibit glutathione (GSH) levels and achieve the therapeutic effect by inhibiting antioxidant system and amplifying oxidative stress, they were co-loaded onto the copper peroxide nanoparticles (CuO) coated with copper tannic acid (Cu-TA), to build a drug delivery system of CuO@Cu-TA@DSF/DHA nanoparticles (CCTDD NPs).

View Article and Find Full Text PDF

Innovative Nanomedicine Delivery: Targeting Tumor Microenvironment to Defeat Drug Resistance.

Pharmaceutics

December 2024

Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.

Nanodrug delivery systems have revolutionized tumor therapy like never before. By overcoming the complexity of the tumor microenvironment (TME) and bypassing drug resistance mechanisms, nanotechnology has shown great potential to improve drug efficacy and reduce toxic side effects. This review examines the impact of the TME on drug resistance and recent advances in nanomedicine delivery systems to overcome this challenge.

View Article and Find Full Text PDF

Nanocarriers for Delivery of Anticancer Drugs: Current Developments, Challenges, and Perspectives.

Pharmaceutics

November 2024

Department of Cell Biology and Molecular Genetics, Sri Devraj Urs Medical College, Sri Devaraj Urs Academy of Higher Education and Research, Kolar 563103, India.

Cancer, the most common condition worldwide, ranks second in terms of the number of human deaths, surpassing cardiovascular diseases. Uncontrolled cell multiplication and resistance to cell death are the traditional features of cancer. The myriad of treatment options include surgery, chemotherapy, radiotherapy, and immunotherapy to treat this disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!