Aromatic amines, such as benzidine and 3,3'-dichlorobenzidine, are chemicals used in the pigment and dye processes. Release of these compounds into the environment is important because of their carcinogenic and toxic nature. In the present study, the sediment and water samples were collected from Lake Macatawa (Holland, MI, USA) and subsequently spiked with benzidine. The grain size distribution of the sediment samples investigated here ranged in composition from sandy to silty-clay sediment types. The sediment-water systems spiked with benzidine were incubated under anaerobic conditions at 4, 15, and 23 degrees C for 211 d. Degradation of benzidine was observed over the time-course analysis of the sediment-water mixtures. Three possible metabolites (aniline, 2-ethyl-1-hexanol, and 1-amino-2-hexene) were observed during this investigation as a result of gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. No metabolites were observed in autoclaved bottles, suggesting that the transformation of benzidine in the sediment-water mixtures was the result of microbial activity. From sediment-water distribution experiments, benzidine demonstrated higher sorption affinity for the different sediment phases than its degradation product, aniline. Therefore, microbially mediated transformation of benzidine to aniline is expected to yield a greater total concentration of the more mobile compound, aniline, in the water phase and a greater possibility for transport of aniline in the water phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1897/05-274r.1 | DOI Listing |
Molecules
January 2025
Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
Compared to natural enzymes, the development of efficient artificial simulated enzymes, such as those based on bimetallic materials with high catalytic activity and good stability, is an important way until now. Herein, we employed ZnCoO microspheres as carriers to synthesize Pt-doped composites with different amounts using a one-pot method. The morphology and structure of the synthesized materials were characterized using XRD, SEM, BET, FT-IR, XPS, and Zeta potential techniques.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
A novel Ru-FeO nanozyme with enhanced peroxidase-like (POD-like) activity was synthesized through a hydrothermal method. Ru-FeO nanozyme was effectively utilized for the detection of thiophanate-methyl (TM) using a colorimetric technique. The POD-like activity of Ru-FeO was found to be superior compared to FeO, Rh-FeO, and Pd-FeO.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
College of Resources and Environment, Southwest University, Chongqing, 400716, China; Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China. Electronic address:
Background: Because arsenate (As(V)) is a highly toxic pollutant, timely on-site monitoring of its concentration is crucial for mitigating potential environmental and health hazards. Traditional on-site detection methods for As(V) often face limitations of long response time and low sensitivity. Nanozymes are nanomaterials that exhibit enzyme-like catalytic activity.
View Article and Find Full Text PDFMikrochim Acta
January 2025
School of Science, Xihua University, Chengdu, 610039, People's Republic of China.
A dual-mode detection platform utilizing colorimetric and Raman was developed based on the exponential amplification reaction (EXPAR) strategy and a "core-satellite" structure constructed by bimetallic nanozymes to detect chloramphenicol (CAP). Initially, DNA-gated metal-organic frameworks (MOFs) incorporating cascaded amplification were used to be nanocarriers for the colorimetric and Raman reporter molecules (3,3',5,5'-tetramethylbiphenyl; TMB). Subsequently, assembled DNA served as gatekeepers to create a stimulus-responsive DNA-gated MOF (TMB@DNA/MOF).
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Pulmonary and Critical Care Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China.
A smartphone-integrated colorimetric sensor is introduced for the rapid detection of phenolic compounds, including 8-hydroquinone (HQ), p-nitrophenol (NP), and catechol (CC). This sensor relies on the peroxidase-mimicking activity of aspartate-based metal-organic frameworks (MOFs) such as Cu-Asp, Ce-Asp, and Cu/Ce-Asp. These MOFs facilitate the oxidation of a colorless substrate, 3,3',5,5'-tetramethylbenzidine (TMB), by reactive oxygen species (ROS) derived from hydrogen peroxide (HO), resulting in the formation of blue-colored oxidized TMB (ox-TMB).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!