Comparative analysis of the QRS voltage response to gravity variations was made using the data about 26 normal human subjects collected in parabolic flights (CNERS-AIRBUS A300 Zero-G, n=23; IL-76MD, n=3) and during the tilt test (head-up tilt at 70 degrees for a min and head-down tilt at-15 degrees for 5 min, n=14). Both the parabolic flights and provocative tilt tests affected R-amplitude in the Z lead. During the hypergravity episodes it was observed in 95% of cases with the mean gain of 16% and maximal--56%. On transition to the horizontal position, the Rz-amplitude showed a rise in each subject (16% on the average). In microgravity, the Rz-amplitude reduced in 95% of the observations. The voltage decline averaged 18% and reached 49% at the maximum. The head-down tilt was conducive to Rz reduction in 78% of observations averaging 2%. Analysis of the ECG records under changing gravity when blood redistribution developed within few seconds not enough for serious metabolic shifts still revealed QRS deviations associated exclusively with the physical factors, i.e., alteration in tissue conduction and distance to electrodes. Our findings can stand in good stead in evaluation of the dynamics of predictive ECG parameters during long-term experiments leading to changes as in tissue conduction, so metabolism.
Download full-text PDF |
Source |
---|
Adv Mater
December 2024
xolo GmbH, Volmerstraße 9B, 12489, Berlin, Germany.
Xolography is a volumetric 3D printing technique utilizing intersecting light beams within a volume of photopolymer for a spatially controlled photopolymerization. Unlike layer-based methods, Xolography creates structures continuously within a closed photopolymer vat, eliminating the prevalent need for support structures and allowing full geometrical freedom at high printing speeds. The volumetric working principle does not rely on gravity, making Xolography an outstanding technology for additive manufacturing under microgravity conditions as illustrated in a set of experiments during a parabolic flight campaign.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Myology Lab, Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia.
In most mammals, postural soleus muscles are involved in the maintenance of the stability of the body in the gravitational field of Earth. It is well established that immediately after a laboratory rat is exposed to conditions of weightlessness (parabolic flight) or simulated microgravity (hindlimb suspension/unloading), a sharp decrease in soleus muscle electrical activity occurs. However, starting from the 3rd day of mechanical unloading, soleus muscle electrical activity begins to increase and reaches baseline levels approximately by the 14th day of hindlimb suspension.
View Article and Find Full Text PDFJAMA Cardiol
November 2024
Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas.
Br J Clin Pharmacol
October 2024
INSERM PARCC UMRS 970, Université Paris-Cité, Paris, France.
Insects
October 2024
Henan Key Laboratory of Agricultural Pest Monitoring and Control, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, International Joint Research Laboratory for Crop Protection of Henan, No. 0 Entomological Radar Field Scientific Observation and Research Station of Henan Province, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
, also known as the fall armyworm (FAW), is classified by the Food and Agriculture Organization of the United Nations (FAO) as a major agricultural pest. By gaining a more nuanced understanding of the fall armyworm's courtship behavior, simpler and more environmentally friendly methods of controlling this pest can be developed. This study used the Track 3D system to meticulously record and describe the activity characteristics and patterns of adult males and females during courtship.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!