Vertebroplasty versus kyphoplasty: biomechanical behavior under repetitive loading conditions.

Spine (Phila Pa 1976)

Department of Physical Medicine and Rehabilitation, Hanyang University, Seoul, Korea.

Published: August 2006

Study Design: Ex vivo biomechanical study using osteoporotic cadaveric fractured vertebral bodies.

Objective: To investigate the behavior of fractured osteoporotic vertebral bodies treated with either vertebroplasty or kyphoplasty under repetitive loading conditions.

Summary Of Background Data: Vertebroplasty and kyphoplasty are newer alternatives for the treatment of osteoporotic vertebral fractures. Loading conditions that can lead to fractures treated with these methods will likely be encountered subsequently; as such, it is important to understand differences in the biomechanical behavior of the resultant constructs.

Methods: There were 7 pairs of osteoporotic T8 and T10 vertebral bodies cyclically loaded to produce a vertebral compression fracture. Of each pair, one was assigned to the kyphoplasty group and the other to the vertebroplasty group. After treatment, specimens were cyclically loaded to 100,000 cycles, between 20% and 70% of the predicted failure load.

Results: Height was restored with kyphoplasty, but the vertebral bodies showed significant height loss during cyclic loading. Vertebroplasty specimens had higher compression stiffness and smaller height reduction.

Conclusions: Under repetitive loading conditions, fractured vertebral bodies treated with kyphoplasty were initially taller, but because of a progressive loss of height during loading, the resulting constructs were shorter after 100,000 cycles than those treated with vertebroplasty.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.brs.0000231714.15876.76DOI Listing

Publication Analysis

Top Keywords

vertebral bodies
16
repetitive loading
12
loading conditions
12
biomechanical behavior
8
fractured vertebral
8
osteoporotic vertebral
8
bodies treated
8
treated vertebroplasty
8
vertebroplasty kyphoplasty
8
cyclically loaded
8

Similar Publications

Background: Axial spondyloarthritis (SpA) leads to structural bone lesions in every part of the vertebral column. These lesions are only partially visualized on conventional radiographs, omitting posterior parts of the vertebral column and the thoracic spine, that may nevertheless contribute to impaired spinal mobility and function in patients with axial SpA.

Methods: In this prospective and blinded investigation, we assessed the distribution of structural spinal lesions using magnetic resonance imaging (MRI) of the whole spine in 55 patients with axial SpA classified according to the Assessment in Spondyloarthritis International Society (ASAS) criteria.

View Article and Find Full Text PDF

Purpose: Although idiopathic scoliosis is a common three-dimensional deformity, there is a lack of studies evaluating the associations between the aortic-vertebral distance (AVD) and spinal deformities in all planes. The study therefore aimed to evaluate how the coronal and sagittal curvature, vertebral rotation and aortic-vertebral angle (AVA) affect the AVD in idiopathic scoliosis.

Methods: The AVD, AVA, vertebral rotation and curve angles were measured on preoperative magnetic resonance imaging and radiographs in 46 patients who underwent posterior spinal fusion with pedicle screw instrumentation for idiopathic scoliosis Lenke types 1 and 2.

View Article and Find Full Text PDF

Introduction Thoracolumbar fractures, particularly burst fractures, represent a significant health concern due to their prevalence and functional impact. This study evaluates the efficacy of short-segment posterior fixation with intermediate screw instrumentation in treating unstable thoracolumbar fractures. Methods A prospective study was conducted from July 2022 to December 2023, including 26 patients with traumatic thoracolumbar fractures.

View Article and Find Full Text PDF

Study Design: Systematic review and clinimetric analysis.

Objectives: Frailty and sarcopenia predict worse surgical outcomes among spinal degenerative and deformity-related populations; this association is less clear in the context of spinal oncology. Here, we sought to identify frailty and sarcopenia tools applied in spinal oncology and appraise their clinimetric properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!