Neuronal homeostasis requires a constant balance between biosynthetic and catabolic processes. Eukaryotic cells primarily use two distinct mechanisms for degradation: the proteasome and autophagy of aggregates by the lysosomes. We focused on the ubiquitin-proteasome system (UPS) and discovered a frameshift protein for ubiquitin (UBB+1), that accumulates in the neuritic plaques and tangles in patients with Alzheimer's disease (AD). UBB+1, unable to tag proteins to be degraded, has been shown to be a substrate for ubiquitination and subsequent proteasomal degradation. If UBB+1 is accumulated, it inhibits the proteasome, which may result in neuronal death. We showed that UB+1 is also present in other tauopathies (e.g. Pick's disease) and in several polyglutamine diseases, but remarkably not in synucleinopathies (e.g. Parkinson's disease). Accumulation of UBB+1-being a reporter for proteasomal dysfunctioning- thus differentiates between these conformational diseases. The accumulation of UBB+1 causes a dysfunctional UPS in these multifactorial neurodegenerative diseases. Novel transgenic mouse models and large-scale expression profiling and functional analyses of enzymes of the UPS compounds - enabling us to identify the targets of the UPS in these conformational diseases - may now pave the way for intervention and treatment of AD.

Download full-text PDF

Source
http://dx.doi.org/10.3233/jad-2006-9s336DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
8
ubiquitin-proteasome system
8
conformational diseases
8
frameshift proteins
4
proteins alzheimer's
4
disease
4
disease conformational
4
conformational disorders
4
disorders time
4
time ubiquitin-proteasome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!