Critical role for a single leucine residue in leukemia induction by E2A-PBX1.

Mol Cell Biol

Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada.

Published: September 2006

In roughly 5% of cases of acute lymphoblastic leukemia, a chromosomal translocation leads to expression of the oncogenic protein E2A-PBX1. The N-terminal portion of E2A-PBX1, encoded by the E2A gene, is identical in sequence to the corresponding portion of the E proteins E12/E47 and includes transcriptional activation domains. The C terminus consists of most of the HOX interacting transcription factor PBX1, including its DNA-binding homeodomain. Structure-function correlative experiments have suggested that oncogenesis by E2A-PBX1 requires an activation domain, called AD1, at the extreme N terminus. We recently demonstrated that a potentially helical portion of AD1 interacts directly with the transcriptional coactivator protein cyclic AMP response element-binding protein (CBP) and that this interaction is essential in the immortalization of primary bone marrow cells in tissue culture. Here we show that a conserved LXXLL motif within AD1 is required in the interaction between E2A-PBX1 and the KIX domain of CBP. We show by circular dichroism spectroscopy that the LXXLL-containing portion of AD1 undergoes a helical transition upon interacting with the KIX domain and that amino acid substitutions that prevent helix formation prevent both the KIX interaction and cell immortalization by E2A-PBX1. Perhaps most strikingly, substitution of a single, conserved leucine residue (L20) within the LXXLL motif impairs leukemia induction in mice after transplantation with E2A-PBX1-expressing bone marrow. The KIX domain of CBP mediates well-characterized interactions with several transcription factors of relevance to leukemia induction. Circumstantial evidence suggests that the side chain of L20 might interact with a deep hydrophobic pocket in the KIX domain. Therefore, our results serve to identify a potential new drug target.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1592826PMC
http://dx.doi.org/10.1128/MCB.02025-05DOI Listing

Publication Analysis

Top Keywords

kix domain
16
leukemia induction
12
leucine residue
8
portion ad1
8
bone marrow
8
lxxll motif
8
domain cbp
8
e2a-pbx1
6
domain
5
kix
5

Similar Publications

Med15 is a general transcriptional regulator and tail module subunit within the RNA Pol II mediator complex. The Med15 protein has a well-structured N-terminal KIX domain, three activator binding domains (ABDs) and several naturally variable polyglutamine (poly-Q) tracts (Q1, Q2, Q3) embedded in an intrinsically disordered central region, and a C-terminal mediator association domain (MAD). We investigated how the presence of ABDs and changes in length and composition of poly-Q tracts influences Med15 activity using phenotypic, gene expression, transcription factor interaction and phase separation assays of truncation, deletion, and synthetic alleles.

View Article and Find Full Text PDF

Comparative crystal structure analysis of the human EP300 and CBP KIX domains.

Biochem Biophys Res Commun

December 2024

Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea; Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi-do, 10408, Republic of Korea. Electronic address:

Small-cell lung cancer (SCLC) is highly lethal because the tumors grow and metastasize rapidly. Effective treatments for SCLC are lacking currently. A recent study demonstrated that the E1A binding protein P300 (EP300) KIX domain has pro-tumorigenic activity and is selectively involved in the development and growth of SCLC.

View Article and Find Full Text PDF

Myc 9aaTAD activation domain binds to mediator of transcription with superior high affinity.

Mol Med

November 2024

Department of Pathological Physiology, Faculty of Medicine, Masaryk University Brno, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic.

The overexpression of MYC genes is frequently found in many human cancers, including adult and pediatric malignant brain tumors. Targeting MYC genes continues to be challenging due to their undruggable nature. Using our prediction algorithm, the nine-amino-acid activation domain (9aaTAD) has been identified in all four Yamanaka factors, including c-Myc.

View Article and Find Full Text PDF

DELLA proteins are negative regulators of the gibberellin response pathway in angiosperms, acting as central hubs that interact with hundreds of transcription factors (TFs) and regulators to modulate their activities. While the mechanism of TF sequestration by DELLAs to prevent DNA binding to downstream targets has been extensively documented, the mechanism that allows them to act as coactivators remains to be understood. Here, we demonstrate that DELLAs directly recruit the Mediator complex to specific loci in Arabidopsis, facilitating transcription.

View Article and Find Full Text PDF

CBP/p300 is a master transcriptional coactivator that regulates gene activation by interacting with multiple transcriptional activators. Dysregulation of protein-protein interactions (PPIs) between the CBP/p300 KIX domain and its activators is implicated in a number of cancers, including breast, leukemia, and colorectal cancer. However, KIX is typically considered "undruggable" because of its shallow binding surfaces lacking both significant topology and promiscuous binding profiles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!