A density functional theory (DFT) study was carried out to calculate (17)O, (14)N and (2)H electric field gradient (EFG) tensors in accurate neutron diffraction structures of alpha-glycine at 288 and 427 K. B3LYP is the used method and 6-311+G(*) and 6-311++G(**) are the basis sets in the calculations of EFG tensors at the sites of (17)O, (14)N and (2)H nuclei in the monomer and the octameric cluster of alpha-glycine at two temperatures. Quadrupole coupling constants and asymmetry parameters are the converted parameters of calculated EFG tensors to experimentally measurable ones. The calculated results of monomer and the target molecule in octameric cluster reveal that hydrogen-bonding interactions play an important role in the crystalline structure of alpha-glycine where the results of the target molecule in octameric cluster are in good agreement with the experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpc.2006.07.010DOI Listing

Publication Analysis

Top Keywords

17o 14n
12
efg tensors
12
octameric cluster
12
density functional
8
14n electric
8
electric field
8
field gradient
8
crystalline structure
8
structure alpha-glycine
8
target molecule
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!