Extracellular tau is toxic to neuronal cells.

FEBS Lett

Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049-Madrid, Spain.

Published: September 2006

The degeneration of neurons in disorders such as Alzheimer's disease has an immediate consequence, the release of intracellular proteins into the extracellular space. One of these proteins, tau, has proven to be toxic when added to cultured neuronal cells. This toxicity varies according to the degree of protein aggregation. The addition of tau to cultured neuroblastoma cells provoked an increase in the levels of intracellular calcium, which is followed by cell death. We suggest that this phenomenon may be mediated by the interaction of tau with muscarinic receptors, which promotes the liberation of calcium from intracellular stores.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2006.07.078DOI Listing

Publication Analysis

Top Keywords

neuronal cells
8
extracellular tau
4
tau toxic
4
toxic neuronal
4
cells degeneration
4
degeneration neurons
4
neurons disorders
4
disorders alzheimer's
4
alzheimer's disease
4
disease consequence
4

Similar Publications

Microglial polarization and ferroptosis are important pathological features in Alzheimer's disease (AD). Ghrelin, a brain-gut hormone, has potential neuroprotective effects in AD. This study aimed to explore the potential mechanisms by which ghrelin regulates the progression of AD, as well as the crosstalk between microglial polarization and ferroptosis.

View Article and Find Full Text PDF

Presently, the in vitro recording of intracellular neuronal signals on microelectrode arrays (MEAs) requires complex 3D nanostructures or invasive and approaches such as electroporation. Here, it is shown that laser poration enables intracellular coupling on planar electrodes without damaging neurons or altering their spontaneous electrophysiological activity, allowing the process to be repeated multiple times on the same cells. This capability distinguishes laser-based neuron poration from more invasive methods like electroporation, which typically serve as endpoint measurement for cells.

View Article and Find Full Text PDF

Background: A neuroinflammatory disease such as Alzheimer's disease, presents a significant challenge in neurotherapeutics, particularly due to the complex etiology and allostatic factors, referred to as CNS stressors, that accelerate the development and progression of the disease. These CNS stressors include cerebral hypo-glucose metabolism, hyperinsulinemia, mitochondrial dysfunction, oxidative stress, impairment of neuronal autophagy, hypoxic insults and neuroinflammation. This study aims to explore the efficacy and safety of DAG-MAG-ΒHB, a novel ketone diester, in mitigating these risk factors by sustaining therapeutic ketosis, independent of conventional metabolic pathways.

View Article and Find Full Text PDF

: We assessed the influence of long-term injection of magnoflorine (MAG) on memory acquisition in mice for the first time. : This isoquinoline alkaloid that belongs to the aporphines was isolated from the roots of by centrifugal partition chromatography (CPC) using a biphasic solvent system composed of chloroform: methanol: water in the ratio 4:3:3 (//) with 20 mM of hydrochloric acid and triethylamine, within 64 min. : Our results indicated that long-term injection of MAG 20 mg/kg dose improve the long-term memory acquisition in mice that were evaluated in the passive avoidance (PA) test with no toxicity records.

View Article and Find Full Text PDF

Neurodegenerative diseases are characterized by progressive loss of neurons and persistent inflammation. Neurons are terminally differentiated cells, and lost neurons cannot be replaced since neurogenesis is restricted to only two neurogenic niches in the adult brain, whose neurogenic potential decreases with age. In this regard, the astrocytes reprogramming into neurons may represent a promising strategy for restoring the lost neurons and rebuilding neural circuits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!