FTIR study on the formation of TiO2 nanostructures in supercritical CO2.

J Phys Chem B

Department of Chemical and Biochemical Engineering, Faculty of Engineering, and Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.

Published: August 2006

TiO(2) nanospherical and fibered structures were obtained via a one-step sol-gel method in supercritical carbon dioxide (scCO(2)) involving polycondensation of the alkoxide monomers titanium isopropoxide (TIP) and titanium butoxide (TBO) with acetic acid (HAc). The resulting materials were characterized by means of electron microscopy (SEM and TEM), X-ray diffraction (XRD), thermal analysis (TGA), and attenuated total reflection Fourier transmission infrared (ATR-FTIR) analysis. Depending on the experimental conditions, TiO(2) anatase nanospheres with a diameter of 20 nm or TiO(2) anatase/rutile nanofibers with a diameter of 10-100 nm were obtained. Fiber formation was enhanced by a higher HAc/Ti ratio and the use of the titanium isopropoxide (TIP) monomer. The mechanism of the microstructure formation was studied using in situ FTIR analysis in scCO(2). The FTIR results indicated that the formation of nanofibers was favored by a titanium hexamer that leads to one-dimensional condensation, while nanospheres were favored by a hexamer that permits three-dimensional condensation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp0570521DOI Listing

Publication Analysis

Top Keywords

titanium isopropoxide
8
ftir study
4
formation
4
study formation
4
tio2
4
formation tio2
4
tio2 nanostructures
4
nanostructures supercritical
4
supercritical co2
4
co2 tio2
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!