Siderophore-mediated iron transport in Bacillus subtilis and Corynebacterium glutamicum.

J Biol Inorg Chem

Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA.

Published: November 2006

Hexadentate bacillibactin is the siderophore of Bacillus subtilis and is structurally similar to the better known enterobactin of Gram-negative bacteria such as Escherichia coli. Although both are triscatecholamide trilactones, the structural differences of these two siderophores result in opposite metal chiralities, different affinity for ferric ion, and dissimilar iron transport behaviors. Bacillibactin was first reported as isolated from Corynebacterium glutamicum and called corynebactin. However, failure of iron-starved C. glutamicum to transport 55Fe bacillibactin and lack of required bacillibactin biosynthetic genes suggest that bacillibactin is not the siderophore produced by this organism. Iron transport mediated by siderophores in B. subtilis occurs through a transport process that is specific for the iron chelating moiety, with parallel pathways for catecholates and hydroxamates. For bacillibactin, enterobactin, and their analogs, neither chirality nor presence of an amino acid spacer affects the uptake and transport process, but alteration of the net charge and size of the molecule impedes the recognition.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00775-006-0151-4DOI Listing

Publication Analysis

Top Keywords

iron transport
12
bacillus subtilis
8
corynebacterium glutamicum
8
bacillibactin siderophore
8
transport process
8
transport
6
bacillibactin
6
siderophore-mediated iron
4
transport bacillus
4
subtilis corynebacterium
4

Similar Publications

(1) Background: The unique geographical and climatic conditions of the Antarctic Peninsula contribute to distinct regional ecosystems. Microorganisms are crucial for sustaining the local ecological equilibrium. However, the variability in soil microbial community diversity across different regions of the Antarctic Peninsula remains underexplored.

View Article and Find Full Text PDF

The Use of Microwave Treatment as a Sustainable Technology for the Drying of Metallurgical Sludge.

Materials (Basel)

December 2024

Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland.

The modern metallurgical industry produces approximately 90% of the volume of all produced steel; for this, integrated technology based on fossil materials such as coal, fluxes, and especially iron ore is used. This industry generates large amounts of waste and by-products at almost all stages of production. Alternative iron and steel production technologies based on iron ore, methane, or pure hydrogen are also not waste-free.

View Article and Find Full Text PDF

Nanocomposites based on FeO and carbonaceous nanoparticles (CNPs), including carbon nanotubes (CNTs) and graphene derivatives (graphene oxide (GO) and reduced graphene oxide (RGO)), such as FeO@GO, FeO@RGO, and FeO@CNT, have demonstrated considerable potential in a number of health applications, including tissue regeneration and innovative cancer treatments such as hyperthermia (HT). This is due to their ability to transport drugs and generate localized heat under the influence of an alternating magnetic field on FeO. Despite the promising potential of CNTs and graphene derivatives as drug delivery systems, their use in biological applications is hindered by challenges related to dispersion in physiological media and particle agglomeration.

View Article and Find Full Text PDF

Mutations in the SLC25A38 gene are responsible for the second most common form of congenital sideroblastic anemia (CSA), a severe condition for which no effective treatment exists. We developed and characterized a K562 erythroleukemia cell line with markedly reduced expression of the SLC25A38 protein (A38-low cells). This model successfully recapitulated the main features of CSA, including reduced heme content and mitochondrial respiration, increase in mitochondrial iron, ROS levels and sensitivity to oxidative stress.

View Article and Find Full Text PDF

Background: (Iron-Sulfur Cluster Assembly 1) is involved in the assembly of iron-sulfur (Fe-S) clusters, which are vital for electron transport and enzyme activity. Some studies suggest the potential involvement of in tumor progression through interactions with ferroptosis-related genes (FRGs) and the tumor immune microenvironment (TME). However, there has been no systematic analysis of its role in FRGs and the TME or its predictive value for prognosis and immunotherapy response across different cancer types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!