Introduction: We have previously shown that estrogen administered in ovariectomized female rabbits significantly reduce myocardial infarct size. We now investigated whether the phytoestrogen genistein similarly protects ischemic myocardium and whether this is associated with its antioxidant properties. In addition, we examined whether genistein abolishes preconditioning, since at high doses, it inhibits tyrosine kinase.
Materials And Methods: We studied five groups of New Zealand white female rabbits. Group A (n = 12) were normal controls, group B (n = 14) were ovariectomized 4 weeks prior to the experiment, group C (n = 10) were ovariectomized and treated with genistein (0.2 mg kg(-1) day(-1) subcutaneously) for 4 weeks before the experiment, group D (n = 12) had intact gonads and were treated with genistein (0.2 mg kg(-1) day(-1) subcutaneously) for 4 weeks before the experiment and group E (n = 8) were ovariectomized 4 weeks prior to the experiment and treated with a single dose of genistein (0.2 mg kg(-1) day(-1) subcutaneously) just prior to the experiment. All animals underwent 30 min of heart ischemia and 120 min of reperfusion, with (subgroup I) or without (subgroup II) preconditioning. Malondialdehyde (MDA) concentration just before the experiment was determined.
Results: We found significant differences between the groups-p < 0.0001 in factorial ANOVA. The groups with preconditioning had significant smaller infarcts compared to those without-AI vs AII (10.66 +/- 1.42% vs 43.22 +/- 2.67%), BI vs BII (18.53 +/- 2.36% vs 43.05 +/- 8.37%), CI vs CII (10.17 +/- 2.07% vs 44.5 +/- 5.47%), DI vs DII (14.98 +/- 2.36% vs 37.79 +/- 3.92%) and EI vs EII (17.11 +/- 3.24% vs 42.08 +/- 3.42%), p < 0.0005. Ovariectomy was not associated with larger myocardial infarctions-AII vs BII, p = NS. Genistein, for 4 weeks, did not protect ischemic myocardium in either ovariectomized or non-ovariectomized animals-BII vs CII and AII vs DII, p = NS. There was no significant difference between the preconditioned animals, with intact gonads or ovariectomized (AI vs BI, p = NS), ovariectomized with or without genistein (BI vs CI, p = NS) and non-ovariectomized whether treated with genistein or not (AI vs DI, p = NS). A single dose of genistein did not offer any protection (EII vs BII, p = NS), nor did it modify the preconditioning effect (EI vs BI, p = NS). We found no significant difference in MDA plasma levels between the groups.
Conclusion: Genistein, at this dose, does not reduce infarct size per se nor abolishes the protection induced by preconditioning, in both ovariectomized and non-ovariectomized animals. Preconditioning offers myocardial protection in animals with intact gonads as well as estrogen deprived; bilateral ovariectomy, at least during short-term, is not associated with larger myocardial infarcts compared to control animals. In addition estrogen deprivation, during short term, as well as genistein do not modify oxidative stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10557-006-8971-6 | DOI Listing |
J Neurosci
January 2025
Laboratory of Reproductive Neurobiology, Hun-Ren Institute of Experimental Medicine, Budapest, 1083 Hungary;
While hypothalamic kisspeptin (KP) neurons play well-established roles in the estrogen-dependent regulation of reproduction, little is known about extrahypothalamic KP-producing (KP) neurons of the lateral septum. As established previously, expression in this region is low and regulated by estrogen receptor- and GABA receptor-dependent mechanisms. Our present experiments on knock-in mice revealed that transgene expression in the LS begins at P33-36 in females and P40-45 in males and is stimulated by estrogen receptor signaling.
View Article and Find Full Text PDFBrain Commun
December 2024
Brain Research Africa Initiative (BRAIN), P.O. Box 25625, Yaoundé, Cameroon.
Epidemiological evidence associates latent infection with the development of neuropsychiatric disorders, and various immunological and environmental factors play key pathophysiological roles through host immune response alterations. We investigated the cognitive and motor alterations occurring in the terminal stage of infection in rats, and whether a low-protein diet, a high-fat diet or ovariectomy may accelerate their development, given the role of malnutrition and menopause on immunity and resistance to infection. In two sets of experiments, 2-month-old (157.
View Article and Find Full Text PDFReprod Sci
December 2024
Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA.
Uterine leiomyomas are common noncancerous hormonally-dependent neoplasms comprised of uterine smooth-muscle cells and fibroblasts. Despite their significant impact on morbidity, effective non-hormonal medical treatments are lacking. In vitro studies have identified the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway as a promising target in leiomyoma cells.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Public Health, Qingdao University, Qingdao 266071, China. Electronic address:
Osteoporosis is a systemic, progressive bone disease that causes metabolic disorders. Previous study identified the preventive effects of hydrolyzed egg yolk peptide (YPEP) on osteoporosis. However, the underlying antiosteoporosis mechanism remains unclear.
View Article and Find Full Text PDFBiol Trace Elem Res
December 2024
Department of Biochemistry, Faculty of Pharmacy, University of Sadat City (USC), Menoufia, Egypt.
Metabolic syndrome during menopause can lead to diabetes, cardiovascular problems, and increased mortality rates. Hormone replacement therapy is recommended to manage climacteric complications, but it has serious adverse effects. This study, therefore, investigated the potential of supplementing some minerals, vitamins, and natural products like boric acid, magnesium, vitamin D3, and extra virgin olive oil on metabolic status of menopausal ovariectomized rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!