Cancer increases with age and often arises from the selective clonal growth of altered cells. Thus, any environment favoring clonal growth per se poses a higher risk for cancer development. Using a genetically tagged animal model, we investigated whether aging is associated with increased clonogenic potential. Groups of 4-, 12-, 18-, and 24-month-old Fischer 344 rats were infused (via the portal vein) with 2x10(6) hepatocytes isolated from a normal syngenic 2-month-old donor. Animals deficient in dipeptidyl-peptidase type IV (DPP-IV-) enzyme were used as recipients, allowing for the histochemical detection of injected DPP-IV+ cells. Groups of animals were sacrificed at various times thereafter. No growth of DPP-IV+ transplanted hepatocytes was present after either 2 or 6 months in the liver of rats transplanted at young age, as expected. In striking contrast, significant expansion of donor-derived cells was seen in animals transplanted at the age of 18 months: clusters comprising 7-10 DPP-IV+ hepatocytes/cross-section were present after 2 months and were markedly enlarged after 6 months (mean of 88+/-35 cells/cluster/cross-section). These results indicate that the microenvironment of the aged liver supports the clonal expansion of transplanted normal hepatocytes. Such clonogenic environments can foster the selective growth of pre-existing altered cells, thereby increasing the overall risk for cancer development associated with aging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1474-9726.2006.00230.x | DOI Listing |
Arterioscler Thromb Vasc Biol
January 2025
British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.).
Background: The ECM (extracellular matrix) provides the microenvironmental niche sensed by resident vascular smooth muscle cells (VSMCs). Aging and disease are associated with dramatic changes in ECM composition and properties; however, their impact on the VSMC phenotype remains poorly studied.
Methods: Here, we describe a novel in vitro model system that utilizes endogenous ECM to study how modifications associated with age and metabolic disease impact the VSMC phenotype.
Clin Interv Aging
January 2025
Department of Neurology, the Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, People's Republic of China.
Purpose: Research suggests that insulin resistance (IR) is associated with acute ischemic stroke (AIS) and depression. The use of insulin-based IR assessments is complicated. Therefore, we explored the relationship between four non-insulin-based IR indices and post-stroke depression (PSD).
View Article and Find Full Text PDFIntroduction: Age-associated depletion in nicotinamide adenine dinucleotide (NAD+) concentrations has been implicated in metabolic, cardiovascular, and neurodegenerative disorders. Supplementation with NAD+ precursors, such as nicotinamide riboside (NR), offers a potential therapeutic avenue against neurodegenerative pathologies in aging, Alzheimer's disease, and related dementias. A crossover, double-blind, randomized placebo (PBO) controlled trial was conducted to test the safety and efficacy of 8 weeks' active treatment with NR (1 g/day) on cognition and plasma AD biomarkers in older adults with subjective cognitive decline and mild cognitive impairment.
View Article and Find Full Text PDFJ Arrhythm
February 2025
Department of Cardiology and Clinical Examination, Faculty of Medicine Oita University Yufu Oita Japan.
Background: The prevalence rates of heart failure (HF) and hyperpolypharmacy have increased with the aging population. While a negative impact of hyperpolypharmacy on HF clinical outcomes has already been reported, the effects of hyperpolypharmacy on patients with advanced HF with reduced ejection fraction (HFrEF) undergoing cardiac resynchronization therapy (CRT) remain unclear.
Methods: We retrospectively evaluated data from 147 patients with advanced HFrEF who underwent CRT between March 2004 and June 2020.
Neurol Res Int
January 2025
Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico.
Alpha-synuclein (ASyn), a marker of Parkinson's disease (PD) and other neurodegenerative processes, plays pivotal roles in neuronal nuclei and synapses. ASyn and its phosphorylated form at Serine 129 (p-ASyn) are involved in DNA protection and repair, processes altered in aging, neurodegeneration, and cancer. To analyze the localization of p-ASyn in skin biopsies of PD patients and melanoma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!