Electromigration of chitosan D-glucosamine and oligomers in dilute aqueous solutions.

J Agric Food Chem

Institute of Nutraceuticals and Functional Foods, Department of Food Sciences and Nutrition, Laval University, Québec, Québec, Canada G1K 7P4.

Published: August 2006

The electromigration behavior of chitosan D-glucosamine and oligomers with a degree of polymerization from 1 to 6 in dilute aqueous systems containing either NaCl or KCl salt at 0.01, 0.05, and 0.1 M at pH values from 2 to 9 was evaluated. The results showed that the electromigration of the chitosan D-glucosamine and oligomers did not change by changing the type of salt in the running medium and that the pH had a significant effect on the direction of migration under an external electric field. In addition, the increase in the ionic strength of the medium caused a significant decrease on the absolute value of the electrophoretic mobility, and the highest values of the electromobility were observed in water. However, the ionic strength had no significant effect on the electrophoretic mobilities at pH 2 in comparison with the other pH values. The dimer showed the highest electrophoretic mobility in the alkaline zone of the pH. At pH values lower than the pKa of the D-glucosamine, the chitosan D-glucosamine, and oligomers migrated toward the anode, where the amine groups are protonated and carry positive charge. At higher pH values, chitosan D-glucosamine and oligomers migrated toward the anode, even though they did not carry any electric charge. The contribution of the difference in the dielectric constants between the solvent and the solute to this phenomenon was highlighted. It was shown that the glucose moiety contributes to the direction of migration of the chitosan D-glucosamine and oligomers under alkaline conditions and that the difference in the dielectric constant of glucose and the solvent accounts for the direction and the extent of electromobility.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf060165cDOI Listing

Publication Analysis

Top Keywords

chitosan d-glucosamine
24
d-glucosamine oligomers
24
electromigration chitosan
8
dilute aqueous
8
direction migration
8
ionic strength
8
electrophoretic mobility
8
oligomers migrated
8
migrated anode
8
difference dielectric
8

Similar Publications

Chitosan, a biodegradable and biocompatible natural polymer composed of β-(1-4)-linked -acetyl glucosamine (GlcNAc) and d-glucosamine (GlcN) and derived from crustacean shells, has been widely studied for various biomedical applications, including drug delivery, cartilage repair, wound healing, and tissue engineering, because of its unique physicochemical properties. One of the most promising areas of research is the investigation of the immunomodulatory properties of chitosan, since the biopolymer has been shown to modulate the maturation, activation, cytokine production, and polarization of dendritic cells and macrophages, two key immune cells involved in the initiation and regulation of innate and adaptive immune responses, leading to enhanced immune responses. Several signaling pathways, including the cGAS-STING, STAT-1, and NLRP3 inflammasomes, are involved in chitosan-induced immunomodulation.

View Article and Find Full Text PDF

Introduction: Non-steroidal anti-inflammatory drugs are associated with severe gastrointestinal irritation upon prolonged use, largely due to their carboxylic (-- COOH) functional group.

Aim: To address this issue, we aimed to synthesize diclofenac conjugates with glucosamine and chitosan, converting the -COOH group into an amide (-CONH-) via a mechanochemical, environmentally friendly method.

Method: In this study, diclofenac acid was first converted to its acid chloride using thionyl chloride under mechanochemical conditions and subsequently reacted with glucosamine base and chitosan.

View Article and Find Full Text PDF

Marine and terrestrial organisms often utilise EGF/EGF-like domains in wet adhesives, yet their roles in adhesion remain unclear. Here, we investigate the Barbatia virescense byssal system and uncover an oxidation-independent, reversible, and robust adhesion mechanism where EGF/EGF-like domain tandem repetitions in adhesive proteins bind robustly to GlcNAc-based biopolymer. EGF/EGF-like-domain-containing proteins demonstrate over three-fold superior underwater adhesion to chitosan compared to the well-known strongest wet-adhesive proteins, mefp-5, and suckerin, when adhering to mica in an surface forces apparatus-based measurement.

View Article and Find Full Text PDF

Catalytic conversion of chitin biomass into key platform chemicals.

Chem Commun (Camb)

January 2025

China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Road, Shanghai, China.

Chitin is the most abundant nitrogen-containing biomass on Earth and presents a compelling alternative to fossil fuels for chemical production. The catalytic conversion of chitin offers a viable approach for harnessing its inherent carbon and nitrogen contents, contributing to developing a green and sustainable society. This feature article reviews recent advances in shell waste biorefinery, with an emphasis on the contributions from our group.

View Article and Find Full Text PDF

Chitosan is a promising biopolymer with wide range of applications. It is the deacetylated product of chitin. Commercially, it is produced from chitin via a harsh thermochemical process that has several shortcomings and heterogenous deacetylation product.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!